C. García Llamas , V.V. Swami , V.P. Petrova , K.A. Buist , J.A.M. Kuipers , M.W. Baltussen
{"title":"Numerical and experimental investigation of the axis-switching behavior of a rectangular jet","authors":"C. García Llamas , V.V. Swami , V.P. Petrova , K.A. Buist , J.A.M. Kuipers , M.W. Baltussen","doi":"10.1016/j.ijmultiphaseflow.2024.104951","DOIUrl":null,"url":null,"abstract":"<div><p>Rectangular jets exhibit axis-switching behavior which results in enhanced flow entrainment compared to round jets. This feature allows for their potential industrial use as passive flow controllers in mixing applications. However, rectangular jets have received limited attention compared to round jets. To operate rectangular jets optimally, a better understanding on the underlying phenomena influencing the axis-switching of the jet is required. In this paper, Direct Numerical Simulations of rectangular jets are performed at different injection velocities using the Local Front Reconstruction Method (LFRM) to track the liquid–gas interface. The simulations are validated using experiments in a similar range of Weber and Reynolds numbers. The obtained results showed that LFRM can accurately capture the jet oscillations, break-up lengths and droplet sizes observed experimentally. Additionally, a fully developed velocity profile at the nozzle outlet enhances the jet stability resulting in larger break-up length values compared to a uniform velocity profile.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"180 ","pages":"Article 104951"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301932224002283/pdfft?md5=0e76fb0fb8f644d8d04666af3011517e&pid=1-s2.0-S0301932224002283-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224002283","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rectangular jets exhibit axis-switching behavior which results in enhanced flow entrainment compared to round jets. This feature allows for their potential industrial use as passive flow controllers in mixing applications. However, rectangular jets have received limited attention compared to round jets. To operate rectangular jets optimally, a better understanding on the underlying phenomena influencing the axis-switching of the jet is required. In this paper, Direct Numerical Simulations of rectangular jets are performed at different injection velocities using the Local Front Reconstruction Method (LFRM) to track the liquid–gas interface. The simulations are validated using experiments in a similar range of Weber and Reynolds numbers. The obtained results showed that LFRM can accurately capture the jet oscillations, break-up lengths and droplet sizes observed experimentally. Additionally, a fully developed velocity profile at the nozzle outlet enhances the jet stability resulting in larger break-up length values compared to a uniform velocity profile.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.