Ranking factors affecting the decontamination efficacy of non-thermal plasma: The approach of dissipated power per plasma volume through machine learning modeling

IF 6.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
George Pampoukis, Marcel H. Zwietering, Heidy M.W. den Besten
{"title":"Ranking factors affecting the decontamination efficacy of non-thermal plasma: The approach of dissipated power per plasma volume through machine learning modeling","authors":"George Pampoukis,&nbsp;Marcel H. Zwietering,&nbsp;Heidy M.W. den Besten","doi":"10.1016/j.ifset.2024.103773","DOIUrl":null,"url":null,"abstract":"<div><p>Non-thermal plasma treatment can preserve food, but a meta-analysis assessing its efficacy has not been performed. This study retrieved the inactivation kinetics parameter log<sub>10</sub><em>D</em> (<em>n</em> = 519), which varied largely among different plasma setups. Atmospheric pressure plasma jet, corona discharge, surface barrier discharge, dielectric barrier discharge, and inductively-coupled plasma had the highest efficacy with median <em>D</em>-values under 2 min. Dielectric barrier discharge, the most frequent setup (<em>n</em> = 160), was analyzed using dissipated power per plasma volume (W/cm<sup>3</sup>) as an integrated predictor of decontamination efficacy. Using conventional and machine learning approaches the most correlated parameters to the log<sub>10</sub><em>D</em> were: dissipated power per plasma volume and matrix category, followed by microbial genus and pH. This study uses active learning to improve literature screening for data collection and various data analysis techniques for data treatment and ranking of the factors affecting non-thermal plasma decontamination.</p></div><div><h3>Industrial relevance</h3><p>Non-thermal plasma decontamination shows potential but is also highly affected by the setup, and technical, biological, and food parameters. This study gives an overview of the decontamination performance that is to be expected for different matrix categories and setups, which could guide possible industrial applications. The ranking of the most important parameters to affect decontamination efficacy could be used for the optimization of these applications.</p></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"96 ","pages":"Article 103773"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1466856424002121/pdfft?md5=04e40d2afc57391f116c1f4f7b1db9f3&pid=1-s2.0-S1466856424002121-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002121","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-thermal plasma treatment can preserve food, but a meta-analysis assessing its efficacy has not been performed. This study retrieved the inactivation kinetics parameter log10D (n = 519), which varied largely among different plasma setups. Atmospheric pressure plasma jet, corona discharge, surface barrier discharge, dielectric barrier discharge, and inductively-coupled plasma had the highest efficacy with median D-values under 2 min. Dielectric barrier discharge, the most frequent setup (n = 160), was analyzed using dissipated power per plasma volume (W/cm3) as an integrated predictor of decontamination efficacy. Using conventional and machine learning approaches the most correlated parameters to the log10D were: dissipated power per plasma volume and matrix category, followed by microbial genus and pH. This study uses active learning to improve literature screening for data collection and various data analysis techniques for data treatment and ranking of the factors affecting non-thermal plasma decontamination.

Industrial relevance

Non-thermal plasma decontamination shows potential but is also highly affected by the setup, and technical, biological, and food parameters. This study gives an overview of the decontamination performance that is to be expected for different matrix categories and setups, which could guide possible industrial applications. The ranking of the most important parameters to affect decontamination efficacy could be used for the optimization of these applications.

对影响非热等离子体去污效果的因素进行排序:通过机器学习建模计算单位等离子体体积耗散功率的方法
非热等离子处理可保存食物,但尚未对其功效进行荟萃分析评估。这项研究检索了灭活动力学参数 log10D(n = 519),不同的等离子体设置在很大程度上存在差异。常压等离子体喷射、电晕放电、表面阻挡放电、介质阻挡放电和电感耦合等离子体的效率最高,D值中位数低于2分钟。介质阻挡放电是最常见的设置(n = 160),使用单位等离子体体积的耗散功率(W/cm3)作为去污效果的综合预测指标进行分析。利用传统方法和机器学习方法,与 log10D 相关度最高的参数是:单位等离子体体积耗散功率和基质类别,其次是微生物属和 pH 值。本研究利用主动学习改进了数据收集的文献筛选以及数据处理和影响非热等离子体去污因素排序的各种数据分析技术。 工业相关性非热等离子体去污显示出潜力,但也受到设置、技术、生物和食品参数的很大影响。本研究概述了不同基质类别和设置的预期去污性能,可为可能的工业应用提供指导。影响去污效果的最重要参数的排序可用于优化这些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
6.10%
发文量
259
审稿时长
25 days
期刊介绍: Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信