{"title":"Kruskal–Katona-type problems via the entropy method","authors":"Ting-Wei Chao , Hung-Hsun Hans Yu","doi":"10.1016/j.jctb.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate several extremal combinatorics problems that ask for the maximum number of copies of a fixed subgraph given the number of edges. We call problems of this type Kruskal–Katona-type problems. Most of the problems that will be discussed in this paper are related to the joints problem. There are two main results in this paper. First, we prove that, in a 3-edge-colored graph with <em>R</em> red, <em>G</em> green, <em>B</em> blue edges, the number of rainbow triangles is at most <span><math><msqrt><mrow><mn>2</mn><mi>R</mi><mi>G</mi><mi>B</mi></mrow></msqrt></math></span>, which is sharp. Second, we give a generalization of the Kruskal–Katona theorem that implies many other previous generalizations. Both arguments use the entropy method, and the main innovation lies in a more clever argument that improves bounds given by Shearer's inequality.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000698","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate several extremal combinatorics problems that ask for the maximum number of copies of a fixed subgraph given the number of edges. We call problems of this type Kruskal–Katona-type problems. Most of the problems that will be discussed in this paper are related to the joints problem. There are two main results in this paper. First, we prove that, in a 3-edge-colored graph with R red, G green, B blue edges, the number of rainbow triangles is at most , which is sharp. Second, we give a generalization of the Kruskal–Katona theorem that implies many other previous generalizations. Both arguments use the entropy method, and the main innovation lies in a more clever argument that improves bounds given by Shearer's inequality.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.