Thermally enhanced flexible phase change materials for thermal energy conversion and management of wearable electronics

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Xinyu Zhang , Hanqing Liu , Yan Kou , Keyan Sun , Wei Han , Yongfei Zhao , Quan Shi
{"title":"Thermally enhanced flexible phase change materials for thermal energy conversion and management of wearable electronics","authors":"Xinyu Zhang ,&nbsp;Hanqing Liu ,&nbsp;Yan Kou ,&nbsp;Keyan Sun ,&nbsp;Wei Han ,&nbsp;Yongfei Zhao ,&nbsp;Quan Shi","doi":"10.1016/j.mtsust.2024.100960","DOIUrl":null,"url":null,"abstract":"<div><p>The developing trend of miniaturization and integration for electronics imposes challenges of efficient heat dissipation technology, where novel materials with advanced thermal energy conversion and management are urgently needed. In this work, we propose an emerging phase change material (PCM) system with polyvinyl alcohol/expanded graphite network loading paraffin wax (PE-PW), which exhibits superb flexibility, thermal energy storage capacity and thermal conductivity. The phase change enthalpy is from 115.61 J/g to 168.93 J/g without any leakage, which can be maintained even after 500 thermal cycles. The thermal conductivity can reach 1.46 W/mK, 484% enhanced compared with that of pure PCM. Meanwhile, the thermal management test indicates that the PE-PW composites can quickly absorb and store the generated heat to achieve temperature control, thus protecting the system from overheating and indicating excellent thermal management capacity. This flexible PE-PW system has broad application prospects in the field of thermal energy conversion and management for wearable electronics.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 100960"},"PeriodicalIF":7.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724002963","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The developing trend of miniaturization and integration for electronics imposes challenges of efficient heat dissipation technology, where novel materials with advanced thermal energy conversion and management are urgently needed. In this work, we propose an emerging phase change material (PCM) system with polyvinyl alcohol/expanded graphite network loading paraffin wax (PE-PW), which exhibits superb flexibility, thermal energy storage capacity and thermal conductivity. The phase change enthalpy is from 115.61 J/g to 168.93 J/g without any leakage, which can be maintained even after 500 thermal cycles. The thermal conductivity can reach 1.46 W/mK, 484% enhanced compared with that of pure PCM. Meanwhile, the thermal management test indicates that the PE-PW composites can quickly absorb and store the generated heat to achieve temperature control, thus protecting the system from overheating and indicating excellent thermal management capacity. This flexible PE-PW system has broad application prospects in the field of thermal energy conversion and management for wearable electronics.

用于可穿戴电子设备热能转换和管理的热增强柔性相变材料
电子产品微型化和集成化的发展趋势对高效散热技术提出了挑战,迫切需要具有先进热能转换和管理功能的新型材料。在这项工作中,我们提出了一种新兴的相变材料(PCM)系统,该系统采用聚乙烯醇/膨胀石墨网络负载石蜡(PE-PW),具有极佳的柔韧性、热能储存能力和热导率。相变焓从 115.61 J/g 到 168.93 J/g,没有任何泄漏,即使经过 500 次热循环也能保持不变。导热系数可达 1.46 W/mK,比纯 PCM 提高了 484%。同时,热管理测试表明,PE-PW 复合材料能迅速吸收和储存产生的热量,实现温度控制,从而防止系统过热,显示出卓越的热管理能力。这种柔性 PE-PW 系统在可穿戴电子设备的热能转换和管理领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信