Construction of N-Fe-S bridge in atomic iron catalyst for boosting Fenton-like reactions

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ke Zhu , Wenlei Qin , Yuwen Chen , Xiaoyin Liang , Haoran Xin , Zhihan Huang , Hector F. Garces , Yaping Gan , Mika Sillanpää , Rongliang Qiu , Guoqing Guan , Kai Yan
{"title":"Construction of N-Fe-S bridge in atomic iron catalyst for boosting Fenton-like reactions","authors":"Ke Zhu ,&nbsp;Wenlei Qin ,&nbsp;Yuwen Chen ,&nbsp;Xiaoyin Liang ,&nbsp;Haoran Xin ,&nbsp;Zhihan Huang ,&nbsp;Hector F. Garces ,&nbsp;Yaping Gan ,&nbsp;Mika Sillanpää ,&nbsp;Rongliang Qiu ,&nbsp;Guoqing Guan ,&nbsp;Kai Yan","doi":"10.1016/j.nantod.2024.102462","DOIUrl":null,"url":null,"abstract":"<div><p>Constructing the coordination environment of single-atom catalysts (SACs) can be an attractive technical strategy to regulate the generation of reactive oxygen species for Fenton-like reactions. Herein, we have constructed an asymmetric coordination of Fe single-atom catalyst (Fe<sub>SA</sub>-NS-PCNS) with abundant N-Fe-S bridge (Fe<sub>SA</sub>-N<sub>3</sub>S<sub>1</sub>) for robust Fenton-like reactions. 82.5 % of singlet oxygen (<sup>1</sup>O<sub>2</sub>) selectivity and high turnover frequency of bisphenol A degradation (0.568 min<sup>−1</sup>) were achieved at mild conditions. Experimental works and theoretical analyses illustrated that S doping breaks the inert environment of the original N-Fe-N symmetric coordination equilibrium and modulates the electron density of the atomic Fe center, which is beneficial for boosting PMS adsorption and reducing the energy barriers of vital *OH and *O intermediates. The coupling between the Fe<sub>SA</sub>-N<sub>3</sub>S<sub>1</sub> interface and peroxymonosulfate molecule boosts in-situ electron transfer through the N-Fe-S bridge, which induces more electron flow from the low valence Fe to OH* on the surface of Fe-*O-H, forming a high yield of <sup>1</sup>O<sub>2</sub>. Moreover, we designed the Fenton-like reactions by Fe<sub>SA</sub>-NS-PCNS membrane reactor for an efficient contaminant removal rate of over 90 % even after 11 cycles. This work provides a novel perspective on developing SACs with asymmetric coordination to regulate reactive oxygen species for the treatment of organic contaminants in water bodies.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"58 ","pages":"Article 102462"},"PeriodicalIF":13.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003189","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing the coordination environment of single-atom catalysts (SACs) can be an attractive technical strategy to regulate the generation of reactive oxygen species for Fenton-like reactions. Herein, we have constructed an asymmetric coordination of Fe single-atom catalyst (FeSA-NS-PCNS) with abundant N-Fe-S bridge (FeSA-N3S1) for robust Fenton-like reactions. 82.5 % of singlet oxygen (1O2) selectivity and high turnover frequency of bisphenol A degradation (0.568 min−1) were achieved at mild conditions. Experimental works and theoretical analyses illustrated that S doping breaks the inert environment of the original N-Fe-N symmetric coordination equilibrium and modulates the electron density of the atomic Fe center, which is beneficial for boosting PMS adsorption and reducing the energy barriers of vital *OH and *O intermediates. The coupling between the FeSA-N3S1 interface and peroxymonosulfate molecule boosts in-situ electron transfer through the N-Fe-S bridge, which induces more electron flow from the low valence Fe to OH* on the surface of Fe-*O-H, forming a high yield of 1O2. Moreover, we designed the Fenton-like reactions by FeSA-NS-PCNS membrane reactor for an efficient contaminant removal rate of over 90 % even after 11 cycles. This work provides a novel perspective on developing SACs with asymmetric coordination to regulate reactive oxygen species for the treatment of organic contaminants in water bodies.

在原子铁催化剂中构建 N-Fe-S 桥,促进类似芬顿的反应
构建单原子催化剂(SACs)的配位环境是调节芬顿类反应中活性氧生成的一种极具吸引力的技术策略。在此,我们构建了一种具有丰富 N-Fe-S 桥(FeSA-N3S1)的不对称配位铁单原子催化剂(FeSA-NS-PCNS),用于强健的类芬顿反应。在温和的条件下,单线态氧(1O2)的选择性达到了 82.5%,双酚 A 的降解周转频率也很高(0.568 min-1)。实验工作和理论分析表明,S 掺杂打破了原有 N-Fe-N 对称配位平衡的惰性环境,调节了原子 Fe 中心的电子密度,有利于促进 PMS 的吸附,降低重要 *OH 和 *O 中间体的能垒。FeSA-N3S1 界面与过一硫酸分子之间的耦合促进了通过 N-Fe-S 桥的原位电子转移,从而诱导更多的电子从低价位的 Fe 流向 Fe-*O-H 表面的 OH*,形成高产率的 1O2。此外,我们还通过 FeSA-NS-PCNS 膜反应器设计了类似芬顿的反应,即使经过 11 次循环,污染物去除率也能达到 90% 以上。这项工作为开发具有不对称配位的 SACs 提供了一个新的视角,以调节水体中有机污染物处理过程中的活性氧物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信