Convergence analysis of higher-order approximation of singularly perturbed 2D semilinear parabolic PDEs with non-homogeneous boundary conditions

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Narendra Singh Yadav , Kaushik Mukherjee
{"title":"Convergence analysis of higher-order approximation of singularly perturbed 2D semilinear parabolic PDEs with non-homogeneous boundary conditions","authors":"Narendra Singh Yadav ,&nbsp;Kaushik Mukherjee","doi":"10.1016/j.apnum.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>This article focuses on developing and analyzing an efficient higher-order numerical approximation of singularly perturbed two-dimensional semilinear parabolic convection-diffusion problems with time-dependent boundary conditions. We approximate the governing nonlinear problem by an implicit fitted mesh method (FMM), which combines an alternating direction implicit scheme in the temporal direction together with a higher-order finite difference scheme in the spatial directions. Since the solution possesses exponential boundary layers, a Cartesian product of piecewise-uniform Shishkin meshes is used to discretize in space. To begin our analysis, we establish the stability corresponding to the continuous nonlinear problem, and obtain a-priori bounds for the solution derivatives. Thereafter, we pursue the stability analysis of the discrete problem, and prove <em>ε</em>-uniform convergence in the maximum-norm. Next, for enhancement of the temporal accuracy, we use the Richardson extrapolation technique solely in the temporal direction. In addition, we investigate the order reduction phenomenon naturally occurring due to the time-dependent boundary data and propose a suitable approximation to tackle this effect. Finally, we present the computational results to validate the theoretical estimates.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"206 ","pages":"Pages 210-246"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001971","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on developing and analyzing an efficient higher-order numerical approximation of singularly perturbed two-dimensional semilinear parabolic convection-diffusion problems with time-dependent boundary conditions. We approximate the governing nonlinear problem by an implicit fitted mesh method (FMM), which combines an alternating direction implicit scheme in the temporal direction together with a higher-order finite difference scheme in the spatial directions. Since the solution possesses exponential boundary layers, a Cartesian product of piecewise-uniform Shishkin meshes is used to discretize in space. To begin our analysis, we establish the stability corresponding to the continuous nonlinear problem, and obtain a-priori bounds for the solution derivatives. Thereafter, we pursue the stability analysis of the discrete problem, and prove ε-uniform convergence in the maximum-norm. Next, for enhancement of the temporal accuracy, we use the Richardson extrapolation technique solely in the temporal direction. In addition, we investigate the order reduction phenomenon naturally occurring due to the time-dependent boundary data and propose a suitable approximation to tackle this effect. Finally, we present the computational results to validate the theoretical estimates.

具有非均质边界条件的奇异扰动二维半线性抛物 PDE 的高阶逼近的收敛性分析
本文着重于开发和分析具有时变边界条件的奇异扰动二维半线性抛物对流扩散问题的高效高阶数值近似方法。我们采用隐式拟合网格法(FMM)近似处理非线性问题,该方法结合了时间方向上的交替方向隐式方案和空间方向上的高阶有限差分方案。由于解法具有指数边界层,因此采用片状均匀 Shishkin 网格的笛卡尔乘积进行空间离散。分析开始时,我们首先建立了连续非线性问题的稳定性,并获得了求解导数的先验约束。之后,我们继续分析离散问题的稳定性,并证明最大值规范下的ε均匀收敛性。接下来,为了提高时间精度,我们只在时间方向上使用理查森外推法。此外,我们还研究了由于边界数据随时间变化而自然产生的阶次减少现象,并提出了一种合适的近似方法来解决这一问题。最后,我们给出了计算结果,以验证理论估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信