{"title":"Magneto-thermoelastic surface waves phenomenon with voids, gravity, initial stress, and rotation under four theories","authors":"","doi":"10.1016/j.aej.2024.08.029","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses a significant research gap in the study of surface waves propagation in a nonhomogeneous, within a magneto-thermoviscoelastic material of higher order, initial stress, rotation, gravity effects and voids. This study provides analytical solutions for surface waves propagating through a medium consisting of a magneto-thermoelastic material with voids under the rotation, electro-magnetic field, gravity field and initial stress. The analytical solutions are derived for the displacement components, volume fraction, temperature to Stoneley and Rayleigh waves are computed numerically and presented graphically considering the external parameters impact. Furthermore, this investigates how magnetic field, voids, gravity, initial stress and fiber-reinforced parameters influence these wave phenomena. This investigation provides valuable insights into the synergistic dynamics among electric constituents, voids, Stoneley and Rayleigh waves propagation, enabling advancements in sensor technology, augmented energy harvesting methodologies, and pioneering seismic monitoring approaches. For certain materials, numerical simulations are provided and graphically displayed. The results of this study reveal several unique cases that significantly contribute to the understanding of Rayleigh and Stoneley waves propagation within this intricate material system, particularly in the presence of voids.</p></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110016824009177/pdfft?md5=002cfb6eeb4661e29a2c0f9cbadd36ac&pid=1-s2.0-S1110016824009177-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824009177","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses a significant research gap in the study of surface waves propagation in a nonhomogeneous, within a magneto-thermoviscoelastic material of higher order, initial stress, rotation, gravity effects and voids. This study provides analytical solutions for surface waves propagating through a medium consisting of a magneto-thermoelastic material with voids under the rotation, electro-magnetic field, gravity field and initial stress. The analytical solutions are derived for the displacement components, volume fraction, temperature to Stoneley and Rayleigh waves are computed numerically and presented graphically considering the external parameters impact. Furthermore, this investigates how magnetic field, voids, gravity, initial stress and fiber-reinforced parameters influence these wave phenomena. This investigation provides valuable insights into the synergistic dynamics among electric constituents, voids, Stoneley and Rayleigh waves propagation, enabling advancements in sensor technology, augmented energy harvesting methodologies, and pioneering seismic monitoring approaches. For certain materials, numerical simulations are provided and graphically displayed. The results of this study reveal several unique cases that significantly contribute to the understanding of Rayleigh and Stoneley waves propagation within this intricate material system, particularly in the presence of voids.
期刊介绍:
Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification:
• Mechanical, Production, Marine and Textile Engineering
• Electrical Engineering, Computer Science and Nuclear Engineering
• Civil and Architecture Engineering
• Chemical Engineering and Applied Sciences
• Environmental Engineering