MKEAH: Multimodal knowledge extraction and accumulation based on hyperplane embedding for knowledge-based visual question answering

Q1 Computer Science
Heng Zhang , Zhihua Wei , Guanming Liu , Rui Wang , Ruibin Mu , Chuanbao Liu , Aiquan Yuan , Guodong Cao , Ning Hu
{"title":"MKEAH: Multimodal knowledge extraction and accumulation based on hyperplane embedding for knowledge-based visual question answering","authors":"Heng Zhang ,&nbsp;Zhihua Wei ,&nbsp;Guanming Liu ,&nbsp;Rui Wang ,&nbsp;Ruibin Mu ,&nbsp;Chuanbao Liu ,&nbsp;Aiquan Yuan ,&nbsp;Guodong Cao ,&nbsp;Ning Hu","doi":"10.1016/j.vrih.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world. Recent entity-relationship embedding approaches are deficient in representing some complex relations, resulting in a lack of topic-related knowledge and redundancy in topic-irrelevant information.</p></div><div><h3>Methods</h3><p>To this end, we propose MKEAH: Multimodal Knowledge Extraction and Accumulation on Hyperplanes. To ensure that the lengths of the feature vectors projected onto the hyperplane compare equally and to filter out sufficient topic-irrelevant information, two losses are proposed to learn the triplet representations from the complementary views: range loss and orthogonal loss. To interpret the capability of extracting topic-related knowledge, we present the Topic Similarity (TS) between topic and entity-relations.</p></div><div><h3>Results</h3><p>Experimental results demonstrate the effectiveness of hyperplane embedding for knowledge representation in knowledge-based visual question answering. Our model outperformed state-of-the-art methods by 2.12% and 3.24% on two challenging knowledge-request datasets: OK-VQA and KRVQA, respectively.</p></div><div><h3>Conclusions</h3><p>The obvious advantages of our model in TS show that using hyperplane embedding to represent multimodal knowledge can improve its ability to extract topic-related knowledge.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096579623000268/pdfft?md5=74ea90656cf281de7a0e35aa5b55705b&pid=1-s2.0-S2096579623000268-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579623000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world. Recent entity-relationship embedding approaches are deficient in representing some complex relations, resulting in a lack of topic-related knowledge and redundancy in topic-irrelevant information.

Methods

To this end, we propose MKEAH: Multimodal Knowledge Extraction and Accumulation on Hyperplanes. To ensure that the lengths of the feature vectors projected onto the hyperplane compare equally and to filter out sufficient topic-irrelevant information, two losses are proposed to learn the triplet representations from the complementary views: range loss and orthogonal loss. To interpret the capability of extracting topic-related knowledge, we present the Topic Similarity (TS) between topic and entity-relations.

Results

Experimental results demonstrate the effectiveness of hyperplane embedding for knowledge representation in knowledge-based visual question answering. Our model outperformed state-of-the-art methods by 2.12% and 3.24% on two challenging knowledge-request datasets: OK-VQA and KRVQA, respectively.

Conclusions

The obvious advantages of our model in TS show that using hyperplane embedding to represent multimodal knowledge can improve its ability to extract topic-related knowledge.

MKEAH: 基于超平面嵌入的多模态知识提取和积累,用于基于知识的视觉问题解答
背景外部知识表征在基于知识的可视化问答中发挥着至关重要的作用,可以更好地理解开放世界中的复杂场景。最近的实体关系嵌入方法在表示一些复杂关系方面存在缺陷,导致缺乏与主题相关的知识和与主题无关的冗余信息。为了确保投射到超平面上的特征向量长度相等,并过滤掉足够多的与主题无关的信息,我们提出了两种损失来学习互补视图的三元组表示:范围损失和正交损失。为了解释提取主题相关知识的能力,我们提出了主题和实体关系之间的主题相似度(TS)。 实验结果实验结果证明了超平面嵌入在基于知识的视觉问题解答中的知识表示的有效性。在两个具有挑战性的知识请求数据集上,我们的模型分别以 2.12% 和 3.24% 的优势超过了最先进的方法:结论我们的模型在 TS 中的明显优势表明,使用超平面嵌入来表示多模态知识可以提高提取主题相关知识的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信