Overlooked role of CO3·- reactivity with different dissociation forms of organic micropollutants in degradation kinetics modeling: A case study of fluoxetine degradation in a UV/peroxymonosulfate system.

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-15 DOI:10.1016/j.jhazmat.2024.135538
Die Zhou, Huaying Liu, Yixi Huang, Yingjie Li, Nian Wang, Jin Wang
{"title":"Overlooked role of CO<sub>3</sub>·<sup>-</sup> reactivity with different dissociation forms of organic micropollutants in degradation kinetics modeling: A case study of fluoxetine degradation in a UV/peroxymonosulfate system.","authors":"Die Zhou, Huaying Liu, Yixi Huang, Yingjie Li, Nian Wang, Jin Wang","doi":"10.1016/j.jhazmat.2024.135538","DOIUrl":null,"url":null,"abstract":"<p><p>Selective oxidizing agent carbonate radical (CO<sub>3</sub><sup>•-</sup>) is an important secondary radical in radical-based advanced oxidation technology for wastewater treatment. However, the role of CO<sub>3</sub><sup>•-</sup> in removing ionizable organic micropollutants (OMs) under environmentally relevant conditions remains unclear. Herein we investigated CO<sub>3</sub><sup>•-</sup> effect on degradation kinetics of fluoxetine in UV/peroxymonosulfate (PMS) system based on a built radical model considering CO<sub>3</sub><sup>•-</sup> reactivity differences with its different dissociation forms. Results revealed that the model, which incorporated CO<sub>3</sub><sup>•-</sup> selective reactivity (with determined second-order rate constants, k<sub>src,CO3·-</sub>, of 7.33 ×10<sup>6</sup> and 2.56 ×10<sup>8</sup> M<sup>-1</sup>s<sup>-1</sup> for cationic and neutral fluoxetine, respectively) provided significantly more accurate predictions of fluoxetine degradation rates (k). A good linear correlation was observed between k<sub>src,CO3·-</sub> from experiments and literatures for 24 ionizable OMs and their molecular orbital energy gaps and oxidation potentials, suggesting the possible electron transfer reaction mechanism. Cl<sup>-</sup> slightly reduced the degradation rates of fluoxetine owing to rapid transformation of Cl<sup>•</sup> with HCO<sub>3</sub><sup>-</sup> into CO<sub>3</sub><sup>•-</sup>, which partially compensated for the quenching effects of Cl<sup>-</sup> on HO<sup>•</sup> and SO<sub>4</sub><sup>•-</sup>. Dissolved organic matter significantly quenched reactive radicals. The constructed kinetic model successfully predicted fluoxetine degradation rates in real waters, with CO<sub>3</sub><sup>•-</sup> being the dominant contributor (∼90 %) to this degradation process.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135538"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Selective oxidizing agent carbonate radical (CO3•-) is an important secondary radical in radical-based advanced oxidation technology for wastewater treatment. However, the role of CO3•- in removing ionizable organic micropollutants (OMs) under environmentally relevant conditions remains unclear. Herein we investigated CO3•- effect on degradation kinetics of fluoxetine in UV/peroxymonosulfate (PMS) system based on a built radical model considering CO3•- reactivity differences with its different dissociation forms. Results revealed that the model, which incorporated CO3•- selective reactivity (with determined second-order rate constants, ksrc,CO3·-, of 7.33 ×106 and 2.56 ×108 M-1s-1 for cationic and neutral fluoxetine, respectively) provided significantly more accurate predictions of fluoxetine degradation rates (k). A good linear correlation was observed between ksrc,CO3·- from experiments and literatures for 24 ionizable OMs and their molecular orbital energy gaps and oxidation potentials, suggesting the possible electron transfer reaction mechanism. Cl- slightly reduced the degradation rates of fluoxetine owing to rapid transformation of Cl with HCO3- into CO3•-, which partially compensated for the quenching effects of Cl- on HO and SO4•-. Dissolved organic matter significantly quenched reactive radicals. The constructed kinetic model successfully predicted fluoxetine degradation rates in real waters, with CO3•- being the dominant contributor (∼90 %) to this degradation process.

降解动力学模型中被忽视的 CO3--与有机微污染物不同解离形式的反应性的作用:紫外线/过氧单硫酸盐系统中氟西汀降解的案例研究。
选择性氧化剂碳酸根(CO3--)是基于自由基的高级氧化技术中用于废水处理的一种重要的二级自由基。然而,CO3--在环境相关条件下去除可电离有机微污染物(OMs)的作用仍不清楚。在此,我们基于建立的自由基模型,考虑到 CO3--与不同解离形式的反应性差异,研究了 CO3--在紫外/过氧单硫酸盐(PMS)系统中对氟西汀降解动力学的影响。结果表明,该模型包含了 CO3--选择性反应(阳离子和中性氟西汀的二阶速率常数 ksrc,CO3-- 分别为 7.33 ×106 和 2.56 ×108 M-1s-1),对氟西汀降解速率(k)的预测更为准确。在 24 种可电离 OMs 的实验和文献中观察到的 ksrc,CO3-- 与它们的分子轨道能隙和氧化电位之间存在良好的线性相关,这表明可能存在电子转移反应机制。由于 Cl- 与 HCO3- 快速转化为 CO3--,Cl- 能部分补偿 Cl- 对 HO- 和 SO4--的淬灭作用,因此 Cl- 能略微降低氟西汀的降解率。溶解的有机物对活性自由基有明显的淬灭作用。所构建的动力学模型成功地预测了氟西汀在实际水体中的降解率,其中 CO3--是降解过程中的主要成分(∼90%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信