Accurate modeling of the potential energy surface of atmospheric molecular clusters boosted by neural networks†

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL
Jakub Kubečka, Daniel Ayoubi, Zeyuan Tang, Yosef Knattrup, Morten Engsvang, Haide Wu and Jonas Elm
{"title":"Accurate modeling of the potential energy surface of atmospheric molecular clusters boosted by neural networks†","authors":"Jakub Kubečka, Daniel Ayoubi, Zeyuan Tang, Yosef Knattrup, Morten Engsvang, Haide Wu and Jonas Elm","doi":"10.1039/D4VA00255E","DOIUrl":null,"url":null,"abstract":"<p >The computational cost of accurate quantum chemistry (QC) calculations of large molecular systems can often be unbearably high. Machine learning offers a lower computational cost compared to QC methods while maintaining their accuracy. In this study, we employ the polarizable atom interaction neural network (PaiNN) architecture to train and model the potential energy surface of molecular clusters relevant to atmospheric new particle formation, such as sulfuric acid–ammonia clusters. We compare the differences between PaiNN and previous kernel ridge regression modeling for the Clusteromics I–V data sets. We showcase three models capable of predicting electronic binding energies and interatomic forces with mean absolute errors of &lt;0.3 kcal mol<small><sup>−1</sup></small> and &lt;0.2 kcal mol<small><sup>−1</sup></small> Å<small><sup>−1</sup></small>, respectively. Furthermore, we demonstrate that the error of the modeled properties remains below the chemical accuracy of 1 kcal mol<small><sup>−1</sup></small> even for clusters vastly larger than those in the training database (up to (H<small><sub>2</sub></small>SO<small><sub>4</sub></small>)<small><sub>15</sub></small>(NH<small><sub>3</sub></small>)<small><sub>15</sub></small> clusters, containing 30 molecules). Consequently, we emphasize the potential applications of these models for faster and more thorough configurational sampling and for boosting molecular dynamics studies of large atmospheric molecular clusters.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00255e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The computational cost of accurate quantum chemistry (QC) calculations of large molecular systems can often be unbearably high. Machine learning offers a lower computational cost compared to QC methods while maintaining their accuracy. In this study, we employ the polarizable atom interaction neural network (PaiNN) architecture to train and model the potential energy surface of molecular clusters relevant to atmospheric new particle formation, such as sulfuric acid–ammonia clusters. We compare the differences between PaiNN and previous kernel ridge regression modeling for the Clusteromics I–V data sets. We showcase three models capable of predicting electronic binding energies and interatomic forces with mean absolute errors of <0.3 kcal mol−1 and <0.2 kcal mol−1 Å−1, respectively. Furthermore, we demonstrate that the error of the modeled properties remains below the chemical accuracy of 1 kcal mol−1 even for clusters vastly larger than those in the training database (up to (H2SO4)15(NH3)15 clusters, containing 30 molecules). Consequently, we emphasize the potential applications of these models for faster and more thorough configurational sampling and for boosting molecular dynamics studies of large atmospheric molecular clusters.

Abstract Image

Abstract Image

利用神经网络对大气分子簇的势能面进行精确建模。
对大型分子系统进行精确量子化学(QC)计算的计算成本往往高得难以承受。与 QC 方法相比,机器学习在保持其准确性的同时,还能降低计算成本。在本研究中,我们采用可极化原子相互作用神经网络(PaiNN)架构来训练和模拟与大气新粒子形成相关的分子簇(如硫酸-氨簇)的势能面。我们比较了 PaiNN 与之前针对 Clusteromics I-V 数据集的核岭回归建模之间的差异。我们展示了三种能够预测电子结合能和原子间作用力的模型,其平均绝对误差分别为-1 和-1 Å-1。此外,我们还证明了建模属性的误差仍低于 1 kcal mol-1 的化学精度,即使是比训练数据库中的集群大得多的集群(多达 (H2SO4)15(NH3)15 集群,包含 30 个分子)也是如此。因此,我们强调这些模型在更快、更彻底的构型采样以及促进大型大气分子簇的分子动力学研究方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信