Nafiseh Aboofazeli, Solmaz Khosravi, Hedayat Bagheri, Stephen F Chandler, Shen Q Pan, Pejman Azadi
{"title":"Conquering Limitations: Exploring the Factors that Drive Successful Agrobacterium-Mediated Genetic Transformation of Recalcitrant Plant Species.","authors":"Nafiseh Aboofazeli, Solmaz Khosravi, Hedayat Bagheri, Stephen F Chandler, Shen Q Pan, Pejman Azadi","doi":"10.1007/s12033-024-01247-x","DOIUrl":null,"url":null,"abstract":"<p><p>Agrobacterium-mediated transformation is a preferred method for genetic engineering and genome editing of plants due to its numerous advantages, although not all species exhibit transformability. Genetic engineering and plant genome editing methods are technically challenging in recalcitrant crop plants. Factors affecting the poor rate of transformation in such species include host genotype, Agrobacterium genotype, type of explant, physiological condition of the explant, vector, selectable marker, inoculation method, chemical additives, antioxidative compounds, transformation-enhancing compounds, medium formulation, optimization of culture conditions, and pre-treatments. This review provides novel insights into the key factors involved in gene transfer facilitated by Agrobacterium and proposes potential solutions to overcome existing barriers to transformation in recalcitrant species, thereby contributing to improvement programs for these species. This review introduces the key factors that impact the effectiveness of a molecular breeding program using Agrobacterium-mediated transformation, specifically focusing on recalcitrant plant species.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3010-3026"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01247-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Agrobacterium-mediated transformation is a preferred method for genetic engineering and genome editing of plants due to its numerous advantages, although not all species exhibit transformability. Genetic engineering and plant genome editing methods are technically challenging in recalcitrant crop plants. Factors affecting the poor rate of transformation in such species include host genotype, Agrobacterium genotype, type of explant, physiological condition of the explant, vector, selectable marker, inoculation method, chemical additives, antioxidative compounds, transformation-enhancing compounds, medium formulation, optimization of culture conditions, and pre-treatments. This review provides novel insights into the key factors involved in gene transfer facilitated by Agrobacterium and proposes potential solutions to overcome existing barriers to transformation in recalcitrant species, thereby contributing to improvement programs for these species. This review introduces the key factors that impact the effectiveness of a molecular breeding program using Agrobacterium-mediated transformation, specifically focusing on recalcitrant plant species.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.