An intelligent deep augmented model for detection of banana leaves diseases.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Amjad Rehman, Ibrahim Abunadi, Faten S Alamri, Haider Ali, Saeed Ali Bahaj, Tanzila Saba
{"title":"An intelligent deep augmented model for detection of banana leaves diseases.","authors":"Amjad Rehman, Ibrahim Abunadi, Faten S Alamri, Haider Ali, Saeed Ali Bahaj, Tanzila Saba","doi":"10.1002/jemt.24681","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most popular fruits worldwide is the banana. Accurate identification and categorization of banana diseases is essential for maintaining global fruits security and stakeholder profitability. Four different types of banana leaves exist Healthy, Cordana, Sigatoka, and Pestalotiopsis. These types can be analyzed using four types of vision: RGB, night vision, infrared vision, and thermal vision. This paper presents an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. Each vision consisted of 1600 images with a size of (224 × 224). The training-testing approach was used to evaluate the performance of the hybrid model on Kaggle dataset, which was justified by various methods and metrics. The proposed model achieved a remarkable mean accuracy rate of 99.16% for RGB vision, 98.02% for night vision, 96.05% for infrared vision, and 96.10% for thermal vision for training and testing data. Microscopy employed in this research as a validation tool. The microscopic examination of leaves confirmed the presence and extent of the disease, providing ground truth data to validate and refine the proposed model. RESEARCH HIGHLIGHTS: The model can be helpful for internet of things -based drones to identify the large scale of banana leaf-disease detection using drones for images acquisition. Proposed an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. The model detected banana leaf disease with a 99.16% accuracy rate for RGB vision, 98.02% accuracy rate for night vision, 96.05% accuracy rate for infrared vision, and 96.10% accuracy rate for thermal vision The model will provide a facility for early disease detection which minimizes crop loss, enhances crop quality, timely decision making, cost saving, risk mitigation, technology adoption, and helps in increasing the yield.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most popular fruits worldwide is the banana. Accurate identification and categorization of banana diseases is essential for maintaining global fruits security and stakeholder profitability. Four different types of banana leaves exist Healthy, Cordana, Sigatoka, and Pestalotiopsis. These types can be analyzed using four types of vision: RGB, night vision, infrared vision, and thermal vision. This paper presents an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. Each vision consisted of 1600 images with a size of (224 × 224). The training-testing approach was used to evaluate the performance of the hybrid model on Kaggle dataset, which was justified by various methods and metrics. The proposed model achieved a remarkable mean accuracy rate of 99.16% for RGB vision, 98.02% for night vision, 96.05% for infrared vision, and 96.10% for thermal vision for training and testing data. Microscopy employed in this research as a validation tool. The microscopic examination of leaves confirmed the presence and extent of the disease, providing ground truth data to validate and refine the proposed model. RESEARCH HIGHLIGHTS: The model can be helpful for internet of things -based drones to identify the large scale of banana leaf-disease detection using drones for images acquisition. Proposed an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. The model detected banana leaf disease with a 99.16% accuracy rate for RGB vision, 98.02% accuracy rate for night vision, 96.05% accuracy rate for infrared vision, and 96.10% accuracy rate for thermal vision The model will provide a facility for early disease detection which minimizes crop loss, enhances crop quality, timely decision making, cost saving, risk mitigation, technology adoption, and helps in increasing the yield.

用于检测香蕉叶病害的智能深度增强模型。
香蕉是全球最受欢迎的水果之一。香蕉病害的准确识别和分类对于维护全球水果安全和利益相关者的盈利能力至关重要。香蕉叶有四种不同的类型:Healthy、Cordana、Sigatoka 和 Pestalotiopsis。这些类型可使用四种视觉进行分析:RGB、夜视、红外视觉和热视觉。本文提出了一种由 VGG19 和被动攻击分类器(PAC)组成的智能深度增强学习模型,用于在每种视觉类型下对香蕉的四种疾病类型进行分类。每种视觉由 1600 张大小为(224 × 224)的图像组成。混合模型在 Kaggle 数据集上的性能评估采用了训练-测试方法,并通过各种方法和指标进行了论证。在训练和测试数据中,所提出模型的 RGB 视觉平均准确率达到 99.16%,夜视准确率达到 98.02%,红外视觉准确率达到 96.05%,热视觉准确率达到 96.10%。本研究采用显微镜作为验证工具。叶片的显微镜检查证实了疾病的存在和程度,为验证和完善所提出的模型提供了基本真实数据。研究亮点:该模型有助于基于物联网的无人机利用无人机图像采集技术识别大面积香蕉叶病害检测。提出了一种由 VGG19 和被动攻击型分类器(PAC)组成的智能深度增强学习模型,对每种视觉下香蕉的四种疾病类型进行分类。该模型在 RGB 视觉下检测香蕉叶病的准确率为 99.16%,在夜视下为 98.02%,在红外视觉下为 96.05%,在热视觉下为 96.10%。该模型将为早期病害检测提供便利,从而最大限度地减少作物损失、提高作物质量、及时决策、节约成本、降低风险、采用技术并帮助提高产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信