Changes in bumblebee queen gut microbiotas during and after overwintering diapause.

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Michelle Z Hotchkiss, Jessica R K Forrest, Alexandre J Poulain
{"title":"Changes in bumblebee queen gut microbiotas during and after overwintering diapause.","authors":"Michelle Z Hotchkiss, Jessica R K Forrest, Alexandre J Poulain","doi":"10.1111/imb.12957","DOIUrl":null,"url":null,"abstract":"<p><p>Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12957","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.

越冬停歇期间和之后熊蜂蜂后肠道微生物群的变化
大黄蜂是重要的授粉者,其肠道微生物群支持宿主的健康。在春季蜂群建立之前,熊蜂蜂后会经历冬季休眠期,此时它们的肠道微生物群会受到干扰,但人们对休眠期内的群落动态知之甚少。蜂后肠道微生物群也有助于工蜂微生物群的播种,因此它们在休眠期后恢复到典型的群落结构非常重要,而这一过程可能会受到杀虫剂暴露的阻碍。我们研究了熊蜂蜂后肠道微生物群落结构和新陈代谢潜力在冬季停歇期间和停歇后的变化情况,以及停歇后的恢复是否会受到农药暴露的影响。为此,我们让商业化的无患子囊蜂蜂王进入休眠期,并在休眠期的 0 个月、2 个月和 4 个月对其实施安乐死。此外,我们还让一些蜂后从休眠期恢复一周后再实施安乐死,并让其中一半蜂后接触常见的除草剂草甘膦。通过全群落、霰弹枪元基因组测序,我们发现蜂王肠道核心系统型在停歇前、停歇期间和停歇后都主导着蜂王肠道微生物群落,但在停歇后期和恢复期间,不再检测到两个系统型,即Schmidhempelia和Snodgrassella。尽管分类群落结构发生了波动,但新陈代谢潜能在休眠和恢复期间保持不变。此外,草甘膦暴露并不影响休眠期后微生物群的恢复。然而,元基因组的组装质量以及我们检测微生物分类群和代谢途径的能力随着微生物丰度的下降而下降,而微生物丰度在休眠期大幅降低。我们的研究为了解熊蜂蜂后肠道微生物群在关键生命阶段如何发生分类和功能上的变化提供了新的视角,并为今后对停歇期熊蜂微生物群的研究提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信