Xiangyu Liu, Hocelayne Paulino Fernandes, Adam Ossowicki, Klaas Vrieling, Suzanne T E Lommen, Thiemo Martijn Bezemer
{"title":"Dissecting negative effects of two root-associated bacteria on the growth of an invasive weed.","authors":"Xiangyu Liu, Hocelayne Paulino Fernandes, Adam Ossowicki, Klaas Vrieling, Suzanne T E Lommen, Thiemo Martijn Bezemer","doi":"10.1093/femsec/fiae116","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-associated microorganisms can negatively influence plant growth, which makes them potential biocontrol agents for weeds. Two Gammaproteobacteria, Serratia plymuthica and Pseudomonas brassicacearum, isolated from roots of Jacobaea vulgaris, an invasive weed, negatively affect its root growth. We examined whether the effects of S. plymuthica and P. brassicacearum on J. vulgaris through root inoculation are concentration-dependent and investigated if these effects were mediated by metabolites in bacterial suspensions. We also tested whether the two bacteria negatively affected seed germination and seedling growth through volatile emissions. Lastly, we investigated the host specificity of these two bacteria on nine other plant species. Both bacteria significantly reduced J. vulgaris root growth after root inoculation, with S. plymuthica showing a concentration-dependent pattern in vitro. The cell-free supernatants of both bacteria did not affect J. vulgaris root growth. Both bacteria inhibited J. vulgaris seed germination and seedling growth via volatiles, displaying distinct volatile profiles. However, these negative effects were not specific to J. vulgaris. Both bacteria negatively affect J. vulgaris through root inoculation via the activity of bacterial cells, while also producing volatiles that hinder J. vulgaris germination and seedling growth. However, their negative effects extend to other plant species, limiting their potential for weed control.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae116","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-associated microorganisms can negatively influence plant growth, which makes them potential biocontrol agents for weeds. Two Gammaproteobacteria, Serratia plymuthica and Pseudomonas brassicacearum, isolated from roots of Jacobaea vulgaris, an invasive weed, negatively affect its root growth. We examined whether the effects of S. plymuthica and P. brassicacearum on J. vulgaris through root inoculation are concentration-dependent and investigated if these effects were mediated by metabolites in bacterial suspensions. We also tested whether the two bacteria negatively affected seed germination and seedling growth through volatile emissions. Lastly, we investigated the host specificity of these two bacteria on nine other plant species. Both bacteria significantly reduced J. vulgaris root growth after root inoculation, with S. plymuthica showing a concentration-dependent pattern in vitro. The cell-free supernatants of both bacteria did not affect J. vulgaris root growth. Both bacteria inhibited J. vulgaris seed germination and seedling growth via volatiles, displaying distinct volatile profiles. However, these negative effects were not specific to J. vulgaris. Both bacteria negatively affect J. vulgaris through root inoculation via the activity of bacterial cells, while also producing volatiles that hinder J. vulgaris germination and seedling growth. However, their negative effects extend to other plant species, limiting their potential for weed control.
与植物相关的微生物可对植物生长产生负面影响,这使它们成为杂草的潜在生物控制剂。从一种入侵性杂草 Jacobaea vulgaris 的根部分离出的两种伽马蛋白菌 Serratia plymuthica 和 P. brassicacearum 会对其根部生长产生负面影响。我们研究了 S. plymuthica 和 P. brassicacearum 通过根部接种对 Jacobaea vulgaris 的影响是否与浓度有关,并研究了这些影响是否由细菌悬浮液中的代谢物介导。我们还测试了这两种细菌是否会通过挥发性排放物对种子萌发和幼苗生长产生负面影响。最后,我们研究了这两种细菌对其他九种植物的寄主特异性。这两种细菌在根部接种后都会明显降低 J. vulgaris 的根系生长,其中 S. plymuthica 在体外表现出浓度依赖性模式。这两种细菌的无细胞上清液对 J. vulgaris 的根系生长没有影响。两种细菌都通过挥发性物质抑制 J. vulgaris 种子萌发和幼苗生长,并表现出不同的挥发性特征。然而,这些负面影响对 J. vulgaris 并无特异性。这两种细菌都通过细菌细胞的活性对根部接种的 J. vulgaris 产生负面影响,同时还产生挥发性物质,阻碍 J. vulgaris 的发芽和幼苗生长。不过,它们的负面影响也会延伸到其他植物物种,从而限制了它们控制杂草的潜力。
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms