{"title":"Factor-augmented transformation models for interval-censored failure time data.","authors":"Hongxi Li, Shuwei Li, Liuquan Sun, Xinyuan Song","doi":"10.1093/biomtc/ujae078","DOIUrl":null,"url":null,"abstract":"<p><p>Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.