Hypoxia-inducible lipid droplet-associated protein (HILPDA) and cystathionine β-synthase (CBS) co-contribute to protecting intestinal epithelial cells from Staphylococcus aureus via regulating lipid droplets formation
Shaodong Fu , Rui Yu , Bo Yang , Xiangan Han , Yuanyuan Xu , Jinfeng Miao
{"title":"Hypoxia-inducible lipid droplet-associated protein (HILPDA) and cystathionine β-synthase (CBS) co-contribute to protecting intestinal epithelial cells from Staphylococcus aureus via regulating lipid droplets formation","authors":"Shaodong Fu , Rui Yu , Bo Yang , Xiangan Han , Yuanyuan Xu , Jinfeng Miao","doi":"10.1016/j.bbalip.2024.159558","DOIUrl":null,"url":null,"abstract":"<div><p>Despite <em>Staphylococcus aureus</em> (<em>S. aureus</em>) being a highly studied zoontic bacterium, its enteropathogenicity remains elusive. Herein, our findings demonstrated that <em>S. aureus</em> infection led to the accumulation of lipid droplets (LDs) in intestinal epithelial cells, accompanied by marked elevation inflammatory response that ultimately decreases intracellular bacterial load. The aforestated phenomenon may be partly attributed to the up-regulation of hypoxia-inducible lipid droplet-associated protein (HILPDA) and the concomitant down-regulation of cystathionine β-synthase (CBS) protein. Moreover, <em>S. aureus</em> infection up-regulated the expression of HILPDA, thereby promoting LDs accumulation, and down-regulated that of CBS, consequently inhibiting microsomal triglyceride transfer protein (MTTP) expression. This process may suppress the transport of LDs to the extracellular environment, further contributing to the formation of intracellular LDs. In summary, the results of this study provide significant insights into the intricate mechanisms through which the host organism combats pathogens and maintains the balance of sulfur and lipid metabolism. These findings not only enhance our understanding of the host's defense mechanisms but also offer promising avenues for the development of novel strategies to combat intestinal infectious diseases.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 8","pages":"Article 159558"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124001082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite Staphylococcus aureus (S. aureus) being a highly studied zoontic bacterium, its enteropathogenicity remains elusive. Herein, our findings demonstrated that S. aureus infection led to the accumulation of lipid droplets (LDs) in intestinal epithelial cells, accompanied by marked elevation inflammatory response that ultimately decreases intracellular bacterial load. The aforestated phenomenon may be partly attributed to the up-regulation of hypoxia-inducible lipid droplet-associated protein (HILPDA) and the concomitant down-regulation of cystathionine β-synthase (CBS) protein. Moreover, S. aureus infection up-regulated the expression of HILPDA, thereby promoting LDs accumulation, and down-regulated that of CBS, consequently inhibiting microsomal triglyceride transfer protein (MTTP) expression. This process may suppress the transport of LDs to the extracellular environment, further contributing to the formation of intracellular LDs. In summary, the results of this study provide significant insights into the intricate mechanisms through which the host organism combats pathogens and maintains the balance of sulfur and lipid metabolism. These findings not only enhance our understanding of the host's defense mechanisms but also offer promising avenues for the development of novel strategies to combat intestinal infectious diseases.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.