Development and Validation of a Novel Isotope Dilution-Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry Method for Serum C-Peptide.

IF 4 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY
Sung-Eun Cho, Jungsun Han, Juyoung You, Jun Hyung Lee, Ahram Yi, Sang Gon Lee, Eun Hee Lee
{"title":"Development and Validation of a Novel Isotope Dilution-Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry Method for Serum C-Peptide.","authors":"Sung-Eun Cho, Jungsun Han, Juyoung You, Jun Hyung Lee, Ahram Yi, Sang Gon Lee, Eun Hee Lee","doi":"10.3343/alm.2024.0072","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mass spectrometry (MS) methods exhibit higher accuracy and comparability in measuring serum C-peptide concentrations than immunoassays. We developed and validated a novel isotope dilution-ultraperformance liquid chromatography-tandem MS (ID-UPLC-MS/MS) assay to measure serum C-peptide concentrations.</p><p><strong>Methods: </strong>Sample pretreatment involved solid-phase extraction, ion-exchange solid-phase extraction, and derivatization with 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (Cayman Chemical, Ann Arbor, Michigan, USA). We used an ExionLC UPLC system (Sciex, Framingham, MA, USA) and a Sciex Triple Quad 6500<sup>+</sup> MS/MS system (Sciex) for electrospray ionization in positive-ion mode with multiple charge states of [M+3H]3+ and multiple reaction monitoring transitions. The total run time was 50 mins, and the flow rate was 0.20 mL/min. We evaluated the precision, trueness, linearity, lower limit of quantitation (LLOQ), carryover, and matrix effects. Method comparison with electrochemiluminescence immunoassay (ECLIA) was performed in 138 clinical specimens.</p><p><strong>Results: </strong>The intra- and inter-run precision coefficients of variation were <5% and the bias values for trueness were <4%, which were all acceptable. The verified linear interval was 0.050-15 ng/mL, and the LLOQ was 0.050 ng/mL. No significant carryover or matrix effects were observed. The correlation between this ID-UPLC-MS/MS method and ECLIA was good (R=0.995, slope=1.564); however, the ECLIA showed a positive bias (51.8%).</p><p><strong>Conclusions: </strong>The developed ID-UPLC-MS/MS assay shows acceptable performance in measuring serum C-peptide concentrations. This will be useful in situations requiring accurate measurement of serum C-peptide in clinical laboratories.</p>","PeriodicalId":8421,"journal":{"name":"Annals of Laboratory Medicine","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Laboratory Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3343/alm.2024.0072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mass spectrometry (MS) methods exhibit higher accuracy and comparability in measuring serum C-peptide concentrations than immunoassays. We developed and validated a novel isotope dilution-ultraperformance liquid chromatography-tandem MS (ID-UPLC-MS/MS) assay to measure serum C-peptide concentrations.

Methods: Sample pretreatment involved solid-phase extraction, ion-exchange solid-phase extraction, and derivatization with 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (Cayman Chemical, Ann Arbor, Michigan, USA). We used an ExionLC UPLC system (Sciex, Framingham, MA, USA) and a Sciex Triple Quad 6500+ MS/MS system (Sciex) for electrospray ionization in positive-ion mode with multiple charge states of [M+3H]3+ and multiple reaction monitoring transitions. The total run time was 50 mins, and the flow rate was 0.20 mL/min. We evaluated the precision, trueness, linearity, lower limit of quantitation (LLOQ), carryover, and matrix effects. Method comparison with electrochemiluminescence immunoassay (ECLIA) was performed in 138 clinical specimens.

Results: The intra- and inter-run precision coefficients of variation were <5% and the bias values for trueness were <4%, which were all acceptable. The verified linear interval was 0.050-15 ng/mL, and the LLOQ was 0.050 ng/mL. No significant carryover or matrix effects were observed. The correlation between this ID-UPLC-MS/MS method and ECLIA was good (R=0.995, slope=1.564); however, the ECLIA showed a positive bias (51.8%).

Conclusions: The developed ID-UPLC-MS/MS assay shows acceptable performance in measuring serum C-peptide concentrations. This will be useful in situations requiring accurate measurement of serum C-peptide in clinical laboratories.

新型同位素稀释-超高效液相色谱-串联质谱法的开发与验证
背景:与免疫测定相比,质谱(MS)方法在测量血清C肽浓度方面具有更高的准确性和可比性。我们开发并验证了一种新型同位素稀释-超高效液相色谱-串联质谱(ID-UPLC-MS/MS)测定法,用于测量血清中 C 肽的浓度:样品预处理包括固相萃取、离子交换固相萃取和6-氨基喹啉基-N-羟基琥珀酰亚胺氨基甲酸酯(Cayman Chemical,美国密歇根州安阿伯市)衍生化。我们使用 ExionLC UPLC 系统(Sciex, Framingham, MA, USA)和 Sciex Triple Quad 6500+ MS/MS 系统(Sciex)在正离子模式下进行电喷雾电离,电荷状态为 [M+3H]3+ 和多个反应监测跃迁。总运行时间为 50 分钟,流速为 0.20 mL/min。我们评估了该方法的精密度、真实度、线性度、定量下限(LLOQ)、携带和基质效应。在 138 份临床标本中将该方法与电化学发光免疫分析法(ECLIA)进行了比较:结果:138 份临床样本的方法与电化学发光免疫分析法(ECLIA)进行了比较:所开发的 ID-UPLC-MS/MS 分析法在测量血清 C 肽浓度方面表现出了可接受的性能。这将有助于临床实验室准确测量血清中的 C 肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Laboratory Medicine
Annals of Laboratory Medicine MEDICAL LABORATORY TECHNOLOGY-
CiteScore
8.30
自引率
12.20%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Annals of Laboratory Medicine is the official journal of Korean Society for Laboratory Medicine. The journal title has been recently changed from the Korean Journal of Laboratory Medicine (ISSN, 1598-6535) from the January issue of 2012. The JCR 2017 Impact factor of Ann Lab Med was 1.916.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信