Liver eQTL meta-analysis illuminates potential molecular mechanisms of cardiometabolic traits.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2024-09-05 Epub Date: 2024-08-21 DOI:10.1016/j.ajhg.2024.07.017
K Alaine Broadaway, Sarah M Brotman, Jonathan D Rosen, Kevin W Currin, Abdalla A Alkhawaja, Amy S Etheridge, Fred Wright, Paul Gallins, Dereje Jima, Yi-Hui Zhou, Michael I Love, Federico Innocenti, Karen L Mohlke
{"title":"Liver eQTL meta-analysis illuminates potential molecular mechanisms of cardiometabolic traits.","authors":"K Alaine Broadaway, Sarah M Brotman, Jonathan D Rosen, Kevin W Currin, Abdalla A Alkhawaja, Amy S Etheridge, Fred Wright, Paul Gallins, Dereje Jima, Yi-Hui Zhou, Michael I Love, Federico Innocenti, Karen L Mohlke","doi":"10.1016/j.ajhg.2024.07.017","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1899-1913"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11393674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.07.017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.

肝脏 eQTL 元分析揭示了心脏代谢特征的潜在分子机制。
了解复杂性状的分子机制对于开发有针对性的干预措施至关重要。我们分析了1183名参与者的肝脏表达定量-性状位点(eQTL)荟萃分析数据,以确定条件不同的信号。我们为 6564 个基因找到了 9,013 个 eQTL 信号;23% 的 e 基因有两个信号,6% 有三个或更多信号。然后,我们将 eQTL 结果与 29 个心脏代谢全基因组关联研究(GWAS)性状的数据进行整合,为 747 个 e 基因确定了 1,582 个 GWAS-eQTL 共定位。非主要 eQTL 信号占所有共定位的 17%。与使用边际 eQTL 和 GWAS 数据相比,在 coloc 之前通过条件分析隔离信号可使共定位增加 37%,这凸显了信号隔离的重要性。分离信号还能带来更强的共定位证据:在多信号区域的 343 个 eQTL-GWAS 信号对中,分离出感兴趣信号的分析在 41% 的测试中带来了更高的共定位后验概率。利用等位基因异质性,我们预测了四个基因的基因表达对肝脏性状的因果效应。为了预测功能变异和调控元件,我们将 eQTL 与肝染色质可及性 QTL(caQTL)共定位,发现了 391 个共定位,包括 73 个与非主要 eQTL 信号的共定位,以及 60 个同时与 caQTL 和 GWAS 信号共定位的 eQTL 信号。最后,我们在 HepG2 中使用了可公开获得的大规模并行报告测定,突出显示了 14 个 eQTL 信号,其中至少包括一个表达调节变体。通过这种多方面的方法来揭示肝脏相关性状的遗传基础,可以促进治疗方法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信