Design, synthesis, biological evaluation and in silico study of N-(Pyrimidin-2-yl)alkyl/arylamide derivatives as quorum sensing inhibitors against Pseudomonas aeruginosa.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Nikki, Abhinetra Jagdish Bhopale, Kusum Kharga, Nanaji Yerramsetti, Rajnish Kumar, Lokender Kumar, Ashok Kumar Yadav
{"title":"Design, synthesis, biological evaluation and in silico study of N-(Pyrimidin-2-yl)alkyl/arylamide derivatives as quorum sensing inhibitors against Pseudomonas aeruginosa.","authors":"Nikki, Abhinetra Jagdish Bhopale, Kusum Kharga, Nanaji Yerramsetti, Rajnish Kumar, Lokender Kumar, Ashok Kumar Yadav","doi":"10.1007/s11030-024-10955-0","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of bacterial resistance to antimicrobial agents poses a serious threat to the effectiveness of treating bacterial illnesses. A major factor contributing to antimicrobial resistance is biofilm formation, driven by quorum sensing (QS). QS suppression inhibits the QS signaling pathway, obstructing cell-to-cell communication. This study focuses on N-(pyrimidin-2-yl)alkyl/arylamide derivatives, which were designed, synthesized, and characterized for their QS inhibitory effects. Among the synthesized compounds (3a-j), compounds 3b, 3d, and 3h exhibited the highest QS inhibitory activity, with inhibition zones of 17.66 ± 6.17, 14.00 ± 6.24, and 17.33 ± 0.66 mm, respectively. Further, molecular docking studies revealed binding affinities between - 8.4 and - 6.3 kcal/mol, indicating strong interactions with the target proteins. Moreover, molecular dynamic simulations confirmed the stability of the protein-ligand complexes for compounds 3b and 3 h. Additionally, in-silico methods were employed to predict the physicochemical properties of these molecules. Overall, these findings underscore the potential of N-(pyrimidin-2-yl)alkyl/arylamide derivatives as QS inhibitors, offering a new perspective for developing alternative antimicrobial therapies.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-10955-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of bacterial resistance to antimicrobial agents poses a serious threat to the effectiveness of treating bacterial illnesses. A major factor contributing to antimicrobial resistance is biofilm formation, driven by quorum sensing (QS). QS suppression inhibits the QS signaling pathway, obstructing cell-to-cell communication. This study focuses on N-(pyrimidin-2-yl)alkyl/arylamide derivatives, which were designed, synthesized, and characterized for their QS inhibitory effects. Among the synthesized compounds (3a-j), compounds 3b, 3d, and 3h exhibited the highest QS inhibitory activity, with inhibition zones of 17.66 ± 6.17, 14.00 ± 6.24, and 17.33 ± 0.66 mm, respectively. Further, molecular docking studies revealed binding affinities between - 8.4 and - 6.3 kcal/mol, indicating strong interactions with the target proteins. Moreover, molecular dynamic simulations confirmed the stability of the protein-ligand complexes for compounds 3b and 3 h. Additionally, in-silico methods were employed to predict the physicochemical properties of these molecules. Overall, these findings underscore the potential of N-(pyrimidin-2-yl)alkyl/arylamide derivatives as QS inhibitors, offering a new perspective for developing alternative antimicrobial therapies.

Abstract Image

N-(嘧啶-2-基)烷基/芳基酰胺衍生物作为铜绿假单胞菌法定量感应抑制剂的设计、合成、生物学评价和硅学研究。
细菌对抗菌剂产生的抗药性严重威胁着细菌疾病的治疗效果。造成抗菌药耐药性的一个主要因素是由法定量感应(QS)驱动的生物膜形成。抑制 QS 可抑制 QS 信号通路,阻碍细胞间的交流。本研究重点研究了 N-(嘧啶-2-基)烷基/芳酰胺衍生物,设计、合成并表征了它们的 QS 抑制作用。在合成的化合物(3a-j)中,化合物 3b、3d 和 3h 的 QS 抑制活性最高,抑制区分别为 17.66 ± 6.17、14.00 ± 6.24 和 17.33 ± 0.66 mm。此外,分子对接研究显示,它们的结合亲和力介于 - 8.4 和 - 6.3 kcal/mol 之间,表明它们与目标蛋白质之间存在很强的相互作用。此外,分子动力学模拟证实了化合物 3b 和 3 h 蛋白配体复合物的稳定性。总之,这些发现强调了 N-(嘧啶-2-基)烷基/芳酰胺衍生物作为 QS 抑制剂的潜力,为开发替代抗菌疗法提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信