Automated sleep detection in movement disorders may allow monitoring sleep, potentially guiding adaptive deep brain stimulation (DBS).
Objectives
The aims were to compare wake-versus-sleep status (WSS) local field potentials (LFP) in a home environment and develop biomarkers of WSS in Parkinson's disease (PD), essential tremor (ET), and Tourette's syndrome (TS) patients.
Methods
Five PD, 2 ET, and 1 TS patient were implanted with Medtronic Percept (3 STN [subthalamic nucleus], 3 GPi [globus pallidus interna], and 2 ventral intermediate nucleus). Over five to seven nights, β-band (12.5–30 Hz) and/or α-band (7–12 Hz) LFP power spectral densities were recorded. Wearable actigraphs tracked sleep.
Results
From sleep to wake, PD LFP β-power increased in STN and decreased in GPi, and α-power increased in both. Machine learning classifiers were trained. For PD, the highest WSS accuracy was 93% (F1 = 0.93), 86% across all patients (F1 = 0.86). The maximum accuracy was 86% for ET and 89% for TS.
期刊介绍:
Movement Disorders publishes a variety of content types including Reviews, Viewpoints, Full Length Articles, Historical Reports, Brief Reports, and Letters. The journal considers original manuscripts on topics related to the diagnosis, therapeutics, pharmacology, biochemistry, physiology, etiology, genetics, and epidemiology of movement disorders. Appropriate topics include Parkinsonism, Chorea, Tremors, Dystonia, Myoclonus, Tics, Tardive Dyskinesia, Spasticity, and Ataxia.