Manipulating cation-anion coordination in fire-retardant electrolytes to enable high-areal-capacity fluoride conversion batteries

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-11-06 DOI:10.1016/j.matt.2024.07.007
Keyi Chen , Wujie Qiu , Meng Lei , Chuanzhong Lai , Jianjun Liu , Chilin Li
{"title":"Manipulating cation-anion coordination in fire-retardant electrolytes to enable high-areal-capacity fluoride conversion batteries","authors":"Keyi Chen ,&nbsp;Wujie Qiu ,&nbsp;Meng Lei ,&nbsp;Chuanzhong Lai ,&nbsp;Jianjun Liu ,&nbsp;Chilin Li","doi":"10.1016/j.matt.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><div>Resource-abundant and multi-redox iron fluorides are considered promising cathodes for large-scale battery systems. However, existing research often overlooks the critical issues at the fluoride-electrolyte interface that cause voltage plateau blurring and capacity degradation. Here, we propose an interfacial engineering strategy for the conversion-type FeF<sub>3</sub> cathode enabled by manipulating the cation-anion coordination in a fire-retardant electrolyte. Lithium difluoro(oxalato)borate has strong electron affinity and induces an anion-rich inner solvation sheath, thereby dominating the construction of the cathode-electrolyte interphase (CEI). The inorganic-enriched CEI layer features electron insulation and facile mass transport, which could suppress interfacial parasitic reactions and promote fluoride structural reversibility. The Li-FeF<sub>3</sub> cell enables well-preserved voltage plateaus and a high capacity of 412 mAh g<sup>−1</sup> with inspiring cycle durability. The superior electrolyte wettability further contributes to a reversible areal capacity as high as 2.94 mAh cm<sup>−2</sup> for fluoride cathode under high FeF<sub>3</sub> mass loading of ∼7.0 mg cm<sup>−2</sup> and lean electrolyte conditions.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 3907-3931"},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Resource-abundant and multi-redox iron fluorides are considered promising cathodes for large-scale battery systems. However, existing research often overlooks the critical issues at the fluoride-electrolyte interface that cause voltage plateau blurring and capacity degradation. Here, we propose an interfacial engineering strategy for the conversion-type FeF3 cathode enabled by manipulating the cation-anion coordination in a fire-retardant electrolyte. Lithium difluoro(oxalato)borate has strong electron affinity and induces an anion-rich inner solvation sheath, thereby dominating the construction of the cathode-electrolyte interphase (CEI). The inorganic-enriched CEI layer features electron insulation and facile mass transport, which could suppress interfacial parasitic reactions and promote fluoride structural reversibility. The Li-FeF3 cell enables well-preserved voltage plateaus and a high capacity of 412 mAh g−1 with inspiring cycle durability. The superior electrolyte wettability further contributes to a reversible areal capacity as high as 2.94 mAh cm−2 for fluoride cathode under high FeF3 mass loading of ∼7.0 mg cm−2 and lean electrolyte conditions.

Abstract Image

Abstract Image

操纵阻燃电解质中的阳离子-阴离子配位,实现高铝容量氟化物转换电池
资源丰富的多氧化还原氟化铁被认为是有希望用于大规模电池系统的阴极。然而,现有研究往往忽视了氟化物-电解质界面的关键问题,这些问题会导致电压高原模糊和容量下降。在此,我们提出了一种界面工程策略,通过操纵阻燃电解质中阳离子与阴离子的配位,实现转换型 FeF3 阴极。二氟(草酸)硼酸锂具有很强的电子亲和性,能诱导出富含阴离子的内部溶解鞘,从而主导阴极-电解质间相 (CEI) 的构建。富含无机物的 CEI 层具有电子绝缘和易于质量传输的特点,可抑制界面寄生反应并促进氟化物结构的可逆性。锂-铁-FeF3 电池能很好地保留电压高原,并具有 412 mAh g-1 的高容量和令人振奋的循环耐久性。优越的电解质润湿性进一步促进了氟化阴极在 FeF3 质量负荷为 7.0 mg cm-2 和贫电解质条件下的可逆面积容量高达 2.94 mAh cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信