Jianlin Wang , Qiuhao Xu , Muhua Sun , Jiyu Xu , Pan Chen , Bohan Yu , Zhongqi Wu , Zitao Chen , Xudan Huang , Huacong Sun , Lei Liao , Chen Cai , Xiaomin Li , Lifen Wang , Xuezeng Tian , Zhi Xu , Sheng Meng , Wenlong Wang , Xuedong Bai
{"title":"Direct observation of autonomous self-healing in silver","authors":"Jianlin Wang , Qiuhao Xu , Muhua Sun , Jiyu Xu , Pan Chen , Bohan Yu , Zhongqi Wu , Zitao Chen , Xudan Huang , Huacong Sun , Lei Liao , Chen Cai , Xiaomin Li , Lifen Wang , Xuezeng Tian , Zhi Xu , Sheng Meng , Wenlong Wang , Xuedong Bai","doi":"10.1016/j.matt.2024.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>Although the concept of self-healing has undergone a recent resurgence of interest in polymers and other soft materials, it is extremely rare for metal solids to autonomously self-repair structural damage without any external trigger. Here, we report on the direct <em>in situ</em> observation of such an autonomous solid-state self-healing behavior in nanoscale silver (Ag) by utilizing atomic-resolution transmission electron microscopy (TEM). Two representative kinds of structural damage—both nanopores and nanocracks—are observed to undergo automatic self-repair at room temperature and well below (down to 173 K) without any external intervention. Importantly, such an autonomous self-healing phenomenon does not occur in gold (Au) at room temperature, as it is hindered by the stronger Au-Au bonding resulting from the known relativistic effect. A combination of atomistic imaging and molecular dynamics simulation unravels that the self-healing process is accomplished through surface-mediated diffusion of Ag atoms as driven by chemical potential imbalance due to the Gibbs-Thomson effect.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 3932-3948"},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the concept of self-healing has undergone a recent resurgence of interest in polymers and other soft materials, it is extremely rare for metal solids to autonomously self-repair structural damage without any external trigger. Here, we report on the direct in situ observation of such an autonomous solid-state self-healing behavior in nanoscale silver (Ag) by utilizing atomic-resolution transmission electron microscopy (TEM). Two representative kinds of structural damage—both nanopores and nanocracks—are observed to undergo automatic self-repair at room temperature and well below (down to 173 K) without any external intervention. Importantly, such an autonomous self-healing phenomenon does not occur in gold (Au) at room temperature, as it is hindered by the stronger Au-Au bonding resulting from the known relativistic effect. A combination of atomistic imaging and molecular dynamics simulation unravels that the self-healing process is accomplished through surface-mediated diffusion of Ag atoms as driven by chemical potential imbalance due to the Gibbs-Thomson effect.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.