Bayan Karimi, Gorm Ole Steffensen, Andrew P. Higginbotham, Charles M. Marcus, Alfredo Levy Yeyati, Jukka P. Pekola
{"title":"Bolometric detection of Josephson radiation","authors":"Bayan Karimi, Gorm Ole Steffensen, Andrew P. Higginbotham, Charles M. Marcus, Alfredo Levy Yeyati, Jukka P. Pekola","doi":"10.1038/s41565-024-01770-7","DOIUrl":null,"url":null,"abstract":"One of the most promising approaches towards large-scale quantum computation uses devices based on many Josephson junctions. Yet, even today, open questions regarding the single junction remain unsolved, such as the detailed understanding of the quantum phase transitions, the coupling of the Josephson junction to the environment or how to improve the coherence of a superconducting qubit. Here we design and build an engineered on-chip reservoir connected to a Josephson junction that acts as an efficient bolometer for detecting the Josephson radiation under non-equilibrium, that is, biased conditions. The bolometer converts the a.c. Josephson current at microwave frequencies up to about 100 GHz into a temperature rise measured by d.c. thermometry. A circuit model based on realistic parameter values captures both the current–voltage characteristics and the measured power quantitatively. The present experiment demonstrates an efficient, wide-band, thermal detection scheme of microwave photons and provides a sensitive detector of Josephson dynamics beyond the standard conductance measurements. An on-chip nano-bolometer integrated with a Josephson junction quantitatively measures the Josephson radiation up to about 100 GHz frequency. This wide-band, thermal detection scheme of microwave photons provides a sensitive detector of Josephson dynamics beyond the standard conductance measurements.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 11","pages":"1613-1618"},"PeriodicalIF":38.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01770-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01770-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most promising approaches towards large-scale quantum computation uses devices based on many Josephson junctions. Yet, even today, open questions regarding the single junction remain unsolved, such as the detailed understanding of the quantum phase transitions, the coupling of the Josephson junction to the environment or how to improve the coherence of a superconducting qubit. Here we design and build an engineered on-chip reservoir connected to a Josephson junction that acts as an efficient bolometer for detecting the Josephson radiation under non-equilibrium, that is, biased conditions. The bolometer converts the a.c. Josephson current at microwave frequencies up to about 100 GHz into a temperature rise measured by d.c. thermometry. A circuit model based on realistic parameter values captures both the current–voltage characteristics and the measured power quantitatively. The present experiment demonstrates an efficient, wide-band, thermal detection scheme of microwave photons and provides a sensitive detector of Josephson dynamics beyond the standard conductance measurements. An on-chip nano-bolometer integrated with a Josephson junction quantitatively measures the Josephson radiation up to about 100 GHz frequency. This wide-band, thermal detection scheme of microwave photons provides a sensitive detector of Josephson dynamics beyond the standard conductance measurements.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.