In LIGO’s Sight? Vigorous Coherent Gravitational Waves from Cooled Collapsar Disks

Ore Gottlieb, Amir Levinson and Yuri Levin
{"title":"In LIGO’s Sight? Vigorous Coherent Gravitational Waves from Cooled Collapsar Disks","authors":"Ore Gottlieb, Amir Levinson and Yuri Levin","doi":"10.3847/2041-8213/ad697c","DOIUrl":null,"url":null,"abstract":"We present the first numerical study of gravitational waves (GWs) from collapsar disks, using state-of-the-art 3D general relativistic magnetohydrodynamic simulations of collapsing stars. These simulations incorporate a fixed Kerr metric for the central black hole (BH) and employ simplified prescriptions for disk cooling. We find that cooled disks with an expected scale height ratio of H/R ≳ 0.1 at ∼10 gravitational radii induce Rossby instability in compact, high-density rings. The trapped Rossby vortices generate vigorous coherent emission regardless of disk magnetization and BH spin. For BH mass of ∼10 M⊙, the GW spectrum peaks at ∼100 Hz, with some breadth due to various nonaxisymmetric modes. The spectrum shifts toward lower frequencies as the disk viscously spreads and the circularization radius of the infalling gas increases. Weaker-cooled disks with H/R ≳ 0.3 form a low-density extended structure of spiral arms, resulting in a broader, lower-amplitude spectrum. Assuming an optimistic detection threshold with a matched-filter signal-to-noise ratio of 20 and a rate similar to Type Ib/c supernovae, LIGO–Virgo–KAGRA (LVK) could detect ≲1 event annually, suggesting that GW events may already be hidden in observed data. Third-generation GW detectors could detect dozens to hundreds of collapsar disks annually, depending on the cooling strength and the disk formation rate. The GW amplitudes from collapsar disks are ≳100 times higher with a substantially greater event rate than those from core-collapse supernovae, making them potentially the most promising burst-type GW class for LVK and Cosmic Explorer. This highlights the importance of further exploration and modeling of disk-powered GWs, promising insights into collapsing star physics.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad697c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present the first numerical study of gravitational waves (GWs) from collapsar disks, using state-of-the-art 3D general relativistic magnetohydrodynamic simulations of collapsing stars. These simulations incorporate a fixed Kerr metric for the central black hole (BH) and employ simplified prescriptions for disk cooling. We find that cooled disks with an expected scale height ratio of H/R ≳ 0.1 at ∼10 gravitational radii induce Rossby instability in compact, high-density rings. The trapped Rossby vortices generate vigorous coherent emission regardless of disk magnetization and BH spin. For BH mass of ∼10 M⊙, the GW spectrum peaks at ∼100 Hz, with some breadth due to various nonaxisymmetric modes. The spectrum shifts toward lower frequencies as the disk viscously spreads and the circularization radius of the infalling gas increases. Weaker-cooled disks with H/R ≳ 0.3 form a low-density extended structure of spiral arms, resulting in a broader, lower-amplitude spectrum. Assuming an optimistic detection threshold with a matched-filter signal-to-noise ratio of 20 and a rate similar to Type Ib/c supernovae, LIGO–Virgo–KAGRA (LVK) could detect ≲1 event annually, suggesting that GW events may already be hidden in observed data. Third-generation GW detectors could detect dozens to hundreds of collapsar disks annually, depending on the cooling strength and the disk formation rate. The GW amplitudes from collapsar disks are ≳100 times higher with a substantially greater event rate than those from core-collapse supernovae, making them potentially the most promising burst-type GW class for LVK and Cosmic Explorer. This highlights the importance of further exploration and modeling of disk-powered GWs, promising insights into collapsing star physics.
LIGO 的视线?来自冷却塌缩星盘的强相干引力波
我们利用最先进的坍缩恒星三维广义相对论磁流体动力学模拟,首次对来自坍缩星盘的引力波(GWs)进行了数值研究。这些模拟结合了中心黑洞(BH)的固定克尔度量,并采用了简化的盘冷却处方。我们发现,在引力半径为 10 ∼ 10 时,预期尺度高度比为 H/R ≳ 0.1 的冷却盘会在紧凑的高密度环中诱发罗斯比不稳定性。被困的罗斯比涡旋会产生强烈的相干发射,与磁盘磁化和BH自旋无关。当 BH 质量为 ∼10 M⊙时,GW 频谱在 ∼100 Hz 处达到峰值,同时由于各种非轴对称模式的存在而具有一定的广度。随着圆盘的粘性扩散和注入气体圆化半径的增加,频谱向低频移动。H/R ≳0.3的弱冷却盘会形成一个低密度的螺旋臂扩展结构,从而产生一个更宽的、低振幅的频谱。假设乐观的探测阈值为匹配滤波器信噪比为 20,探测率类似于 Ib/c 型超新星,LIGO-Virgo-KAGRA(LVK)每年可以探测到≲1 个事件,这表明 GW 事件可能已经隐藏在观测数据中。第三代 GW 探测器每年可以探测到数十到数百个塌缩星盘,这取决于冷却强度和星盘形成率。来自塌缩星盘的 GW 振幅是来自塌缩超新星的 GW 振幅的 100 倍,事件发生率也大大高于来自塌缩超新星的 GW 振幅,这使它们可能成为 LVK 和宇宙探测器最有前途的爆发型 GW 类别。这凸显了进一步探索和模拟盘动力 GWs 的重要性,有望深入了解坍缩星物理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信