Deformation Characteristics and Mechanical Constitutive Model of Coal Under Stress Wave Action

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Zhoujie Gu, Rongxi Shen, Siqing Zhang, Xin Zhou, Zhentang Liu, Enlai Zhao, Xiulei Wang, Jianbin Jia
{"title":"Deformation Characteristics and Mechanical Constitutive Model of Coal Under Stress Wave Action","authors":"Zhoujie Gu, Rongxi Shen, Siqing Zhang, Xin Zhou, Zhentang Liu, Enlai Zhao, Xiulei Wang, Jianbin Jia","doi":"10.1007/s11053-024-10388-4","DOIUrl":null,"url":null,"abstract":"<p>The three-dimensional (3D) stress waves of coal samples were studied using a true triaxial split Hopkinson pressure bar compression rod. The results indicate that the 3D strain of the coal samples increased gradually under vibration load. The 3D stress wave of coal samples showed attenuation characteristics, and the change amplitude of the stress wave of coal samples along the direction of dynamic load was the most obvious. The amplitude of stress wave was the largest in the axial direction constrained by pre-stressing 3 MPa, while the amplitude of stress wave in the lateral 2 MPa pre-stressing was smaller than that under the constraint of 1 MPa. The results showed that the main deformation of coal samples was along the impact direction, while the larger horizontal and vertical lateral binding forces limited the deformation of coal samples. The Fourier transform was performed on the 3D stress wave of the coal samples, and the change in the amplitude of the stress wave spectrum was correlated positively with the vibration. The spectrum amplitude of the coal samples under the pre-stressed 3 MPa constraint (axial) direction was the largest, while the spectrum amplitude of the coal samples under the lateral 2 MPa pre-stressed constraint was smaller than that under the binding 1 MPa. However, the main frequency of the three-way stress wave was distributed in 0–10 kHz. By calculating the energy consumption rate and wave velocity decay rate, it was verified that the damage of coal samples increased with increase in dynamic load. This experimental testing provides an effective testing method for studying the 3D stress waves of coal samples under complex stress medium conditions. In addition, a dynamic constitutive model of coal was constructed according to the mechanical behavior of coal and rock mass and the measured data.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10388-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The three-dimensional (3D) stress waves of coal samples were studied using a true triaxial split Hopkinson pressure bar compression rod. The results indicate that the 3D strain of the coal samples increased gradually under vibration load. The 3D stress wave of coal samples showed attenuation characteristics, and the change amplitude of the stress wave of coal samples along the direction of dynamic load was the most obvious. The amplitude of stress wave was the largest in the axial direction constrained by pre-stressing 3 MPa, while the amplitude of stress wave in the lateral 2 MPa pre-stressing was smaller than that under the constraint of 1 MPa. The results showed that the main deformation of coal samples was along the impact direction, while the larger horizontal and vertical lateral binding forces limited the deformation of coal samples. The Fourier transform was performed on the 3D stress wave of the coal samples, and the change in the amplitude of the stress wave spectrum was correlated positively with the vibration. The spectrum amplitude of the coal samples under the pre-stressed 3 MPa constraint (axial) direction was the largest, while the spectrum amplitude of the coal samples under the lateral 2 MPa pre-stressed constraint was smaller than that under the binding 1 MPa. However, the main frequency of the three-way stress wave was distributed in 0–10 kHz. By calculating the energy consumption rate and wave velocity decay rate, it was verified that the damage of coal samples increased with increase in dynamic load. This experimental testing provides an effective testing method for studying the 3D stress waves of coal samples under complex stress medium conditions. In addition, a dynamic constitutive model of coal was constructed according to the mechanical behavior of coal and rock mass and the measured data.

Abstract Image

应力波作用下煤炭的变形特征和力学结构模型
使用真正的三轴分裂霍普金森压杆压缩棒研究了煤样的三维(3D)应力波。结果表明,在振动载荷作用下,煤样的三维应变逐渐增加。煤样的三维应力波呈现衰减特征,煤样应力波沿动载荷方向的变化幅度最为明显。轴向预应力3 MPa约束下的应力波幅最大,而横向2 MPa预应力约束下的应力波幅小于1 MPa约束下的应力波幅。结果表明,煤样的主要变形是沿冲击方向的,而较大的水平和垂直横向约束力限制了煤样的变形。对煤样的三维应力波进行了傅立叶变换,应力波频谱振幅的变化与振动呈正相关。煤样在 3 兆帕预应力约束(轴向)下的频谱振幅最大,而煤样在横向 2 兆帕预应力约束下的频谱振幅小于约束 1 兆帕下的频谱振幅。不过,三向应力波的主频分布在 0-10 kHz。通过计算能量消耗率和波速衰减率,验证了煤样的破坏随动载荷的增加而增加。该实验测试为研究复杂应力介质条件下煤样的三维应力波提供了一种有效的测试方法。此外,还根据煤和岩体的力学行为以及测量数据,构建了煤的动力构成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信