Multi-channel electron transfer induced by polyvanadate in metal-organic framework for boosted peroxymonosulfate activation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ming-Yan Lan, Yu-Hang Li, Chong-Chen Wang, Xin-Jie Li, Jiazhen Cao, Linghui Meng, Shuai Gao, Yuhui Ma, Haodong Ji, Mingyang Xing
{"title":"Multi-channel electron transfer induced by polyvanadate in metal-organic framework for boosted peroxymonosulfate activation","authors":"Ming-Yan Lan, Yu-Hang Li, Chong-Chen Wang, Xin-Jie Li, Jiazhen Cao, Linghui Meng, Shuai Gao, Yuhui Ma, Haodong Ji, Mingyang Xing","doi":"10.1038/s41467-024-51525-0","DOIUrl":null,"url":null,"abstract":"<p>Catalytic peroxymonosulfate (PMS) activation processes don’t solely rely on electron transfer from dominant metal centers due to the complicated composition and interface environment of catalysts. Herein the synthesis of a cobalt based metal-organic framework containing polyvanadate [V<sub>4</sub>O<sub>12</sub>]<sup>4−</sup> cluster, Co<sub>2</sub>(V<sub>4</sub>O<sub>12</sub>)(bpy)<sub>2</sub> (bpy = 4,4’-bipyridine), is presented. The catalyst demonstrates superior degradation activity toward various micropollutants, with higher highest occupied molecular orbital (HOMO), via nonradical attack. The X-ray absorption spectroscopy and density functional theory (DFT) calculations demonstrate that Co sites act as both PMS trapper and electron donor. In situ spectral characterizations and DFT calculations reveal that the terminal oxygen atoms in the [V<sub>4</sub>O<sub>12</sub>]<sup>4−</sup> electron sponge could interact with the terminal hydrogen atoms in PMS to form hydrogen bonds, promoting the generation of SO<sub>5</sub>* intermediate via both dynamic pull and direct electron transfer process. Further, Co<sub>2</sub>(V<sub>4</sub>O<sub>12</sub>)(bpy)<sub>2</sub> exhibits long-term water purification ability, up to 40 h, towards actual wastewater discharged from an ofloxacin production factory. This work not only presents an efficient catalyst with an electron sponge for water environmental remediation via nonradical pathway, but also provides fundamental insights into the Fenton-like reaction mechanism.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51525-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic peroxymonosulfate (PMS) activation processes don’t solely rely on electron transfer from dominant metal centers due to the complicated composition and interface environment of catalysts. Herein the synthesis of a cobalt based metal-organic framework containing polyvanadate [V4O12]4− cluster, Co2(V4O12)(bpy)2 (bpy = 4,4’-bipyridine), is presented. The catalyst demonstrates superior degradation activity toward various micropollutants, with higher highest occupied molecular orbital (HOMO), via nonradical attack. The X-ray absorption spectroscopy and density functional theory (DFT) calculations demonstrate that Co sites act as both PMS trapper and electron donor. In situ spectral characterizations and DFT calculations reveal that the terminal oxygen atoms in the [V4O12]4− electron sponge could interact with the terminal hydrogen atoms in PMS to form hydrogen bonds, promoting the generation of SO5* intermediate via both dynamic pull and direct electron transfer process. Further, Co2(V4O12)(bpy)2 exhibits long-term water purification ability, up to 40 h, towards actual wastewater discharged from an ofloxacin production factory. This work not only presents an efficient catalyst with an electron sponge for water environmental remediation via nonradical pathway, but also provides fundamental insights into the Fenton-like reaction mechanism.

Abstract Image

金属有机框架中的聚钒酸盐诱导多通道电子转移,促进过一硫酸盐活化
由于催化剂的组成和界面环境复杂,过一硫酸盐(PMS)的催化活化过程并不完全依赖于主导金属中心的电子传递。本文介绍了含有聚钒酸盐 [V4O12]4- 簇的钴基金属有机框架 Co2(V4O12)(mby)2(mby = 4,4'-联吡啶)的合成。该催化剂通过非自由基攻击,对具有较高最高占据分子轨道(HOMO)的各种微污染物表现出卓越的降解活性。X 射线吸收光谱和密度泛函理论(DFT)计算表明,钴位点既是 PMS 的捕获器,又是电子供体。原位光谱表征和 DFT 计算显示,[V4O12]4- 电子海绵中的末端氧原子可与 PMS 中的末端氢原子相互作用形成氢键,通过动态牵引和直接电子转移过程促进 SO5* 中间体的生成。此外,Co2(V4O12)(苄基)2 对氧氟沙星生产厂排放的实际废水具有长达 40 小时的长期水净化能力。这项研究不仅提出了一种高效的电子海绵催化剂,可通过非自由基途径进行水环境修复,而且还提供了对类似芬顿反应机理的基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信