Zaoming Wang, Idaira Pacheco-Fernández, James E. Carpenter, Takuma Aoyama, Guoji Huang, Ali Pournaghshband Isfahani, Behnam Ghalei, Easan Sivaniah, Kenji Urayama, Yamil J. Colón, Shuhei Furukawa
{"title":"Pore-networked membrane using linked metal-organic polyhedra for trace-level pollutant removal and detection in environmental water","authors":"Zaoming Wang, Idaira Pacheco-Fernández, James E. Carpenter, Takuma Aoyama, Guoji Huang, Ali Pournaghshband Isfahani, Behnam Ghalei, Easan Sivaniah, Kenji Urayama, Yamil J. Colón, Shuhei Furukawa","doi":"10.1038/s43246-024-00607-z","DOIUrl":null,"url":null,"abstract":"The wide presence of pharmaceuticals and personal care products (PPCPs) in water is a major pollution concern even at the part per billion level, which urges their detection and removal. Current research emphasizes the use of microporous materials as adsorbents for pollutant removal but demonstrates the performance at a higher concentration than realistic environmental water due to the absence of efficient detection methods that can be coupled with the removal process. Here we report a pore-networked membrane (PNM) that can simultaneously remove and detect targeted trace-level PPCPs. These PNMs are designed by interconnecting adsorbents within polymer matrices, forming continuous, tunable porous networks that are accessible for PPCPs, thereby offering high selectivity and adsorption capacity. Evaluations across water samples containing 13 pollutants demonstrate the capability of PNMs to selectively adsorb PPCPs for removal and subsequently release them into analysis solution for detection, positioning their promising use in real water treatment workflow. It is challenging for microporous materials to remove pollutants at concentrations relevant to environmental water. Here, a pore-networked membrane system designed from linked metal-organic polyhedra can simultaneously remove and detect targeted pharmaceuticals and personal care products at trace level","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00607-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00607-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The wide presence of pharmaceuticals and personal care products (PPCPs) in water is a major pollution concern even at the part per billion level, which urges their detection and removal. Current research emphasizes the use of microporous materials as adsorbents for pollutant removal but demonstrates the performance at a higher concentration than realistic environmental water due to the absence of efficient detection methods that can be coupled with the removal process. Here we report a pore-networked membrane (PNM) that can simultaneously remove and detect targeted trace-level PPCPs. These PNMs are designed by interconnecting adsorbents within polymer matrices, forming continuous, tunable porous networks that are accessible for PPCPs, thereby offering high selectivity and adsorption capacity. Evaluations across water samples containing 13 pollutants demonstrate the capability of PNMs to selectively adsorb PPCPs for removal and subsequently release them into analysis solution for detection, positioning their promising use in real water treatment workflow. It is challenging for microporous materials to remove pollutants at concentrations relevant to environmental water. Here, a pore-networked membrane system designed from linked metal-organic polyhedra can simultaneously remove and detect targeted pharmaceuticals and personal care products at trace level
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.