Construction of multi-bubble blow-up solutions to the L 2 $L^2$ -critical half-wave equation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daomin Cao, Yiming Su, Deng Zhang
{"title":"Construction of multi-bubble blow-up solutions to the \n \n \n L\n 2\n \n $L^2$\n -critical half-wave equation","authors":"Daomin Cao,&nbsp;Yiming Su,&nbsp;Deng Zhang","doi":"10.1112/jlms.12974","DOIUrl":null,"url":null,"abstract":"<p>This paper concerns the bubbling phenomena for the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-critical half-wave equation in dimension one. Given arbitrarily finitely many distinct singularities, we construct blow-up solutions concentrating exactly at these singularities. This provides the first examples of multi-bubble solutions for the half-wave equation. In particular, the solutions exhibit the mass quantization property. Our proof strategy draws upon the modulation method in Krieger, Lenzmann and Raphaël [Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61–129] for the single-bubble case, and explores the localization techniques in Cao, Su and Zhang [Arch. Ration. Mech. Anal. 247 (2023), no. 1, Paper No. 4] and Röckner, Su and Zhang [Trans. Amer. Math. Soc., 377 (2024), no. 1, 517–588] for bubbling solutions to non-linear Schrödinger equations (NLS). However, unlike the single-bubble or NLS cases, different bubbles exhibit the strongest interactions in dimension one. In order to get sharp estimates to control these interactions, as well as non-local effects on localization functions, we utilize the Carlderón estimate and the integration representation formula of the half-wave operator, and find that there exists a narrow room between the orders <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n <annotation>$|t|^{2+}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>3</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n <annotation>$|t|^{3-}$</annotation>\n </semantics></math> for the remainder in the geometrical decomposition. Based on this, a novel bootstrap scheme is introduced to address the multi-bubble non-local structure.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12974","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns the bubbling phenomena for the L 2 $L^2$ -critical half-wave equation in dimension one. Given arbitrarily finitely many distinct singularities, we construct blow-up solutions concentrating exactly at these singularities. This provides the first examples of multi-bubble solutions for the half-wave equation. In particular, the solutions exhibit the mass quantization property. Our proof strategy draws upon the modulation method in Krieger, Lenzmann and Raphaël [Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61–129] for the single-bubble case, and explores the localization techniques in Cao, Su and Zhang [Arch. Ration. Mech. Anal. 247 (2023), no. 1, Paper No. 4] and Röckner, Su and Zhang [Trans. Amer. Math. Soc., 377 (2024), no. 1, 517–588] for bubbling solutions to non-linear Schrödinger equations (NLS). However, unlike the single-bubble or NLS cases, different bubbles exhibit the strongest interactions in dimension one. In order to get sharp estimates to control these interactions, as well as non-local effects on localization functions, we utilize the Carlderón estimate and the integration representation formula of the half-wave operator, and find that there exists a narrow room between the orders | t | 2 + $|t|^{2+}$ and | t | 3 $|t|^{3-}$ for the remainder in the geometrical decomposition. Based on this, a novel bootstrap scheme is introduced to address the multi-bubble non-local structure.

构建 L 2 $L^2$ 临界半波方程的多气泡炸裂解
本文涉及一维 L 2 $L^2$ 临界半波方程的气泡现象。在给定任意有限多个不同奇点的情况下,我们构建了恰好集中于这些奇点的气泡解。这提供了半波方程多气泡解的第一个例子。特别是,这些解展现了质量量子化特性。我们的证明策略借鉴了 Krieger, Lenzmann 和 Raphaël [Arch. Ration. Mech. Anal、377 (2024), no. 1, 517-588] 的非线性薛定谔方程 (NLS) 的气泡解。然而,与单气泡或 NLS 的情况不同,不同气泡在一维中表现出最强的相互作用。为了得到控制这些相互作用的尖锐估计值,以及对局部化函数的非局部效应,我们利用了半波算子的卡尔德龙估计和积分表示公式,并发现在几何分解的剩余阶数|t|2+$|t|^{2+}$和|t|3-$|t|^{3-}$之间存在一个狭窄的空间。在此基础上,引入了一种新的引导方案来解决多气泡非局部结构问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信