{"title":"Construction of multi-bubble blow-up solutions to the \n \n \n L\n 2\n \n $L^2$\n -critical half-wave equation","authors":"Daomin Cao, Yiming Su, Deng Zhang","doi":"10.1112/jlms.12974","DOIUrl":null,"url":null,"abstract":"<p>This paper concerns the bubbling phenomena for the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-critical half-wave equation in dimension one. Given arbitrarily finitely many distinct singularities, we construct blow-up solutions concentrating exactly at these singularities. This provides the first examples of multi-bubble solutions for the half-wave equation. In particular, the solutions exhibit the mass quantization property. Our proof strategy draws upon the modulation method in Krieger, Lenzmann and Raphaël [Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61–129] for the single-bubble case, and explores the localization techniques in Cao, Su and Zhang [Arch. Ration. Mech. Anal. 247 (2023), no. 1, Paper No. 4] and Röckner, Su and Zhang [Trans. Amer. Math. Soc., 377 (2024), no. 1, 517–588] for bubbling solutions to non-linear Schrödinger equations (NLS). However, unlike the single-bubble or NLS cases, different bubbles exhibit the strongest interactions in dimension one. In order to get sharp estimates to control these interactions, as well as non-local effects on localization functions, we utilize the Carlderón estimate and the integration representation formula of the half-wave operator, and find that there exists a narrow room between the orders <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n <annotation>$|t|^{2+}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>t</mi>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>3</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n <annotation>$|t|^{3-}$</annotation>\n </semantics></math> for the remainder in the geometrical decomposition. Based on this, a novel bootstrap scheme is introduced to address the multi-bubble non-local structure.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12974","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper concerns the bubbling phenomena for the -critical half-wave equation in dimension one. Given arbitrarily finitely many distinct singularities, we construct blow-up solutions concentrating exactly at these singularities. This provides the first examples of multi-bubble solutions for the half-wave equation. In particular, the solutions exhibit the mass quantization property. Our proof strategy draws upon the modulation method in Krieger, Lenzmann and Raphaël [Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61–129] for the single-bubble case, and explores the localization techniques in Cao, Su and Zhang [Arch. Ration. Mech. Anal. 247 (2023), no. 1, Paper No. 4] and Röckner, Su and Zhang [Trans. Amer. Math. Soc., 377 (2024), no. 1, 517–588] for bubbling solutions to non-linear Schrödinger equations (NLS). However, unlike the single-bubble or NLS cases, different bubbles exhibit the strongest interactions in dimension one. In order to get sharp estimates to control these interactions, as well as non-local effects on localization functions, we utilize the Carlderón estimate and the integration representation formula of the half-wave operator, and find that there exists a narrow room between the orders and for the remainder in the geometrical decomposition. Based on this, a novel bootstrap scheme is introduced to address the multi-bubble non-local structure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.