Development of AI-Enabled Sign Language Predicting Glove Using 3-D Printed Triboelectric Sensors

Muhammad Wajahat;Abbas Z. Kouzani;Sui Yang Khoo;M. A. Parvez Mahmud
{"title":"Development of AI-Enabled Sign Language Predicting Glove Using 3-D Printed Triboelectric Sensors","authors":"Muhammad Wajahat;Abbas Z. Kouzani;Sui Yang Khoo;M. A. Parvez Mahmud","doi":"10.1109/JFLEX.2024.3419078","DOIUrl":null,"url":null,"abstract":"Triboelectric energy harvesters and sensors are emerging as a desirable approach for energy harvesting and sensing. This study investigates several 3-D printed materials for the development of triboelectric nanogenerators (TENGs) and sensors. Our initial research focus is on establishing the most effective flexible 3-D printed materials for contact separation mode (CSM) TENGs. This includes a thorough examination of materials such as polyamide 6,6 (PA6,6), Vero clear, copper-coated polylactic acid (Cu-PLA), polycarbonate (PC), and acrylonitrile styrene acrylate (ASA) as well as several commercially available triboelectric negative materials. The best combination of 3-D printing (3DP) PA6,6 and Veroclear yields a maximum open circuit voltage (\n<inline-formula> <tex-math>$V_{\\mathrm {OC}}$ </tex-math></inline-formula>\n) of 63 V and an instantaneous current of \n<inline-formula> <tex-math>$0.8~\\mu $ </tex-math></inline-formula>\nA. With extension based on this foundation, we investigated the use of polyamide PA6,6 as a triboelectric sensor for sign language interpretation. A novel approach is adopted by integrating 3DP PA6,6 strip with an aluminum electrode onto a glove which captures the subtle movements of fingers involved in sign language. Output generated by this TENG is processed through an Arduino microcontroller which is provided with the data for alphabets A-J with high consistency and repeatability. After detailed preprocessing of the data generated by sensors, convolutional neural network (CNN), long short-term memory (LSTM), and gated recurrent unit (GRU) machine learning algorithms are utilized to train the data. Comparison analysis of these algorithms displays the highest training and validation accuracy of 99% from LSTM. These results showcase the potential of flexible 3DP Triboelectric sensors in enhancing communication for the hearing impaired.","PeriodicalId":100623,"journal":{"name":"IEEE Journal on Flexible Electronics","volume":"3 6","pages":"266-273"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Flexible Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579913/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Triboelectric energy harvesters and sensors are emerging as a desirable approach for energy harvesting and sensing. This study investigates several 3-D printed materials for the development of triboelectric nanogenerators (TENGs) and sensors. Our initial research focus is on establishing the most effective flexible 3-D printed materials for contact separation mode (CSM) TENGs. This includes a thorough examination of materials such as polyamide 6,6 (PA6,6), Vero clear, copper-coated polylactic acid (Cu-PLA), polycarbonate (PC), and acrylonitrile styrene acrylate (ASA) as well as several commercially available triboelectric negative materials. The best combination of 3-D printing (3DP) PA6,6 and Veroclear yields a maximum open circuit voltage ( $V_{\mathrm {OC}}$ ) of 63 V and an instantaneous current of $0.8~\mu $ A. With extension based on this foundation, we investigated the use of polyamide PA6,6 as a triboelectric sensor for sign language interpretation. A novel approach is adopted by integrating 3DP PA6,6 strip with an aluminum electrode onto a glove which captures the subtle movements of fingers involved in sign language. Output generated by this TENG is processed through an Arduino microcontroller which is provided with the data for alphabets A-J with high consistency and repeatability. After detailed preprocessing of the data generated by sensors, convolutional neural network (CNN), long short-term memory (LSTM), and gated recurrent unit (GRU) machine learning algorithms are utilized to train the data. Comparison analysis of these algorithms displays the highest training and validation accuracy of 99% from LSTM. These results showcase the potential of flexible 3DP Triboelectric sensors in enhancing communication for the hearing impaired.
利用三维打印三电传感器开发人工智能手语预测手套
三电能量收集器和传感器正在成为一种理想的能量收集和传感方法。本研究调查了几种用于开发三电纳米发电机(TENGs)和传感器的 3-D 打印材料。我们最初的研究重点是为接触分离模式 (CSM) TENG 确定最有效的柔性 3-D 打印材料。这包括对聚酰胺 6,6 (PA6,6)、Vero clear、铜涂层聚乳酸 (Cu-PLA)、聚碳酸酯 (PC) 和丙烯腈-苯乙烯-丙烯酸酯 (ASA) 等材料以及几种市售的三电负极材料进行彻底研究。3-D 打印 (3DP) PA6,6 和 Veroclear 的最佳组合可产生 63 V 的最大开路电压($V_{\mathrm {OC}}$)和 0.8~\mu $ A 的瞬时电流。在此基础上进行扩展,我们研究了将聚酰胺 PA6,6 用作手语翻译的三电传感器。我们采用了一种新颖的方法,将 3DP PA6,6 带与铝电极集成到手套上,从而捕捉手语中手指的细微动作。通过 Arduino 微控制器处理该 TENG 生成的输出,可提供字母 A-J 的数据,且具有高度一致性和可重复性。在对传感器生成的数据进行详细预处理后,利用卷积神经网络(CNN)、长短期记忆(LSTM)和门控递归单元(GRU)机器学习算法对数据进行训练。对这些算法的比较分析表明,LSTM 的训练和验证准确率最高,达到 99%。这些结果展示了灵活的 3DP 三电波传感器在增强听障人士交流方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信