Multi-Material Torque Sensor Embedding One-Shot 3D-Printed Deformable Capacitive Structures

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jose Eduardo Aguilar-Segovia;Maxime Manzano;Sylvain Guégan;Ronan Le Breton;Alice Farhi-Rivasseau;Sylvain Lefebvre;Marie Babel
{"title":"Multi-Material Torque Sensor Embedding One-Shot 3D-Printed Deformable Capacitive Structures","authors":"Jose Eduardo Aguilar-Segovia;Maxime Manzano;Sylvain Guégan;Ronan Le Breton;Alice Farhi-Rivasseau;Sylvain Lefebvre;Marie Babel","doi":"10.1109/LSENS.2024.3440195","DOIUrl":null,"url":null,"abstract":"Measuring interaction forces between robots and humans is a major challenge in physical human–robot interactions. Nowadays, conventional force/torque sensors suffer from bulkiness, high cost, and stiffness, which limit their use in soft robotics. Thus, we introduce a novel torque sensor manufactured with material extrusion technology. Our approach relies on capacitive structures, which are at the same time the deformable and sensing parts of the sensor, making it very compact. These structures are made in one single print, simplifying the manufacturing process compared to traditional torque sensors. The sensor characteristics can be modulated thanks to material extrusion technology. We conduct experiments in a dedicated test bench to characterize the proposed torque sensor. From the characterization results, we implement a torque estimator based on the deformation angle estimate calculated from capacitance changes. The proposed torque sensor is able to measure torques within a \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n2.5 N\n<inline-formula><tex-math>$\\cdot$</tex-math></inline-formula>\nm range with a maximum error of 6% up to a deformation angle velocity of \n<inline-formula><tex-math>$\\text {35}^{\\circ }/\\text{s}$</tex-math></inline-formula>\n. It is also able to measure its deformation angle with a maximum error of \n<inline-formula><tex-math>$\\text {0.4}^{\\circ }$</tex-math></inline-formula>\n. The accuracy of our sensor makes it suitable to ensure fine control in physical human–robot interaction applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10628988/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring interaction forces between robots and humans is a major challenge in physical human–robot interactions. Nowadays, conventional force/torque sensors suffer from bulkiness, high cost, and stiffness, which limit their use in soft robotics. Thus, we introduce a novel torque sensor manufactured with material extrusion technology. Our approach relies on capacitive structures, which are at the same time the deformable and sensing parts of the sensor, making it very compact. These structures are made in one single print, simplifying the manufacturing process compared to traditional torque sensors. The sensor characteristics can be modulated thanks to material extrusion technology. We conduct experiments in a dedicated test bench to characterize the proposed torque sensor. From the characterization results, we implement a torque estimator based on the deformation angle estimate calculated from capacitance changes. The proposed torque sensor is able to measure torques within a $\pm$ 2.5 N $\cdot$ m range with a maximum error of 6% up to a deformation angle velocity of $\text {35}^{\circ }/\text{s}$ . It is also able to measure its deformation angle with a maximum error of $\text {0.4}^{\circ }$ . The accuracy of our sensor makes it suitable to ensure fine control in physical human–robot interaction applications.
嵌入一次性 3D 打印可变形电容结构的多材料扭矩传感器
测量机器人与人类之间的相互作用力是人与机器人物理交互中的一大挑战。目前,传统的力/力矩传感器存在体积大、成本高、刚度大等问题,限制了其在软体机器人中的应用。因此,我们推出了一种利用材料挤压技术制造的新型扭矩传感器。我们的方法依赖于电容结构,这种结构同时是传感器的可变形部分和传感部分,因此非常紧凑。这些结构只需一次印刷,与传统扭矩传感器相比,简化了制造过程。由于采用了材料挤压技术,传感器的特性可以调节。我们在专用试验台上进行了实验,以鉴定所提出的扭矩传感器。根据表征结果,我们基于电容变化计算出的变形角估计值,实现了扭矩估计器。在形变角速度为 $\text {35}^\{circ }/\text{s}$ 的情况下,拟议的扭矩传感器能够在 $\pm$2.5 N$\cdot$m 的范围内测量扭矩,最大误差为 6%。它还能测量变形角,最大误差为 $\text {0.4}^{\circ }$。我们传感器的精度使其适用于确保人机交互应用中的精细控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信