{"title":"Subconvexity of twisted Shintani zeta functions","authors":"Robert D. Hough , Eun Hye Lee","doi":"10.1016/j.jnt.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Previously the authors proved subconvexity of Shintani's zeta function enumerating class numbers of binary cubic forms. Here we return to prove subconvexity of the Maass form twisted version. The method demonstrated here has applications to the subconvexity of some of the twisted zeta functions introduced by F. Sato. The argument demonstrates that the symmetric space condition used by Sato is not necessary to estimate the zeta function in the critical strip.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001781/pdfft?md5=416d6328f418d63f0962779de94e173a&pid=1-s2.0-S0022314X24001781-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Previously the authors proved subconvexity of Shintani's zeta function enumerating class numbers of binary cubic forms. Here we return to prove subconvexity of the Maass form twisted version. The method demonstrated here has applications to the subconvexity of some of the twisted zeta functions introduced by F. Sato. The argument demonstrates that the symmetric space condition used by Sato is not necessary to estimate the zeta function in the critical strip.