Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode

Q1 Materials Science
A. Muhammad Afdhal Saputra , Marpongahtun , Andriayani , Diana Alemin Barus , Ronn Goei , Alfred Tok , Muhammad Ibadurrahman , H.T.S Risky Ramadhan , Muhammad Irvan Hasibuan , Ton Peijs , Saharman Gea
{"title":"Facile synthesis and electrochemical performance of bacterial cellulose/reduced graphene oxide/NiCo-layered double hydroxide composite film for self-standing supercapacitor electrode","authors":"A. Muhammad Afdhal Saputra ,&nbsp;Marpongahtun ,&nbsp;Andriayani ,&nbsp;Diana Alemin Barus ,&nbsp;Ronn Goei ,&nbsp;Alfred Tok ,&nbsp;Muhammad Ibadurrahman ,&nbsp;H.T.S Risky Ramadhan ,&nbsp;Muhammad Irvan Hasibuan ,&nbsp;Ton Peijs ,&nbsp;Saharman Gea","doi":"10.1016/j.mset.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs a cost-efficient method to create a pliable BC/rGO-NiCo-LDH electrode film on a bacterial cellulose base. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analyses verified the incorporation of reduced graphene oxide (rGO) and nickel–cobalt layered double hydroxide (NiCo-LDH) into the bacterial cellulose structure. The BC/rGO-NiCo-LDH composite material exhibited high-temperature stability and achieved a specific capacitance of 311 F g<sup>−1</sup> at a scan rate of 0.1 mV/s, surpassing that of earlier cellulose electrodes. The electrode film showed exceptional mechanical capabilities, displaying flexibility and load resistance without any structural damage. The film’s flexibility and lightweight properties were improved due to the low density of 0.656 g cm<sup>−3</sup>, which is a result of the nanoporous structure and intrinsic low density of rGO and cellulose. A retention ratio of 0.40 for storage modulus at a glass transition temperature of around 90°C demonstrated positive mechanical performance. This cost-effective and uncomplicated synthesis approach produced a BC/rGO-NiCo-LDH electrode with potential. The material possessed favourable mechanical and electrochemical characteristics, making it suitable for wearable electronics.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 66-81"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258929912400017X/pdfft?md5=fd04eadb0ba29e0223deec7e4f851883&pid=1-s2.0-S258929912400017X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258929912400017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs a cost-efficient method to create a pliable BC/rGO-NiCo-LDH electrode film on a bacterial cellulose base. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) analyses verified the incorporation of reduced graphene oxide (rGO) and nickel–cobalt layered double hydroxide (NiCo-LDH) into the bacterial cellulose structure. The BC/rGO-NiCo-LDH composite material exhibited high-temperature stability and achieved a specific capacitance of 311 F g−1 at a scan rate of 0.1 mV/s, surpassing that of earlier cellulose electrodes. The electrode film showed exceptional mechanical capabilities, displaying flexibility and load resistance without any structural damage. The film’s flexibility and lightweight properties were improved due to the low density of 0.656 g cm−3, which is a result of the nanoporous structure and intrinsic low density of rGO and cellulose. A retention ratio of 0.40 for storage modulus at a glass transition temperature of around 90°C demonstrated positive mechanical performance. This cost-effective and uncomplicated synthesis approach produced a BC/rGO-NiCo-LDH electrode with potential. The material possessed favourable mechanical and electrochemical characteristics, making it suitable for wearable electronics.

Abstract Image

用于自立式超级电容器电极的细菌纤维素/还原氧化石墨烯/镍钴层双氢氧化物复合薄膜的简便合成及其电化学性能
本研究采用一种经济高效的方法,在细菌纤维素基底上制作出柔韧的 BC/rGO-NiCo-LDH 电极膜。X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、拉曼光谱、X 射线光电子能谱 (XPS) 和扫描电子显微镜与能量色散 X 射线光谱 (SEM-EDX) 分析验证了还原氧化石墨烯 (rGO) 和镍钴层状双氢氧化物 (NiCo-LDH) 与细菌纤维素结构的结合。BC/rGO-NiCo-LDH 复合材料具有高温稳定性,在 0.1 mV/s 的扫描速率下,比电容达到 311 F g-1,超过了早期的纤维素电极。该电极薄膜显示出卓越的机械性能,具有柔韧性和抗负载能力,且无任何结构损伤。由于 rGO 和纤维素具有纳米多孔结构和固有的低密度,薄膜的柔韧性和轻质特性得到了改善,密度低至 0.656 g cm-3。在 90°C 左右的玻璃转化温度下,储存模量的保持率为 0.40,这表明了良好的机械性能。这种具有成本效益且不复杂的合成方法产生了一种具有潜力的 BC/rGO-NiCo-LDH 电极。这种材料具有良好的机械和电化学特性,适合用于可穿戴电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信