Interpolated coefficients stabilizer-free weak Galerkin method for semilinear parabolic convection–diffusion problem

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
{"title":"Interpolated coefficients stabilizer-free weak Galerkin method for semilinear parabolic convection–diffusion problem","authors":"","doi":"10.1016/j.aml.2024.109268","DOIUrl":null,"url":null,"abstract":"<div><p>We continue our effort in Li et al. (2024) to explore an interpolated coefficients stabilizer-free weak Galerkin finite element method (IC SFWG-FEM) to solve a one-dimensional semilinear parabolic convection–diffusion equation. Due to the introduction of interpolated coefficients and the design without stabilizers, this method not only possesses the capability of approximating functions and sparsity in the stiffness matrix, but also reduces the complexity of analysis and programming. Theoretical analysis of stability for the semi-discrete IC SFWG finite element scheme is provided. Moreover, numerical experiments are carried out to demonstrate the effectivity and stability.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592400288X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We continue our effort in Li et al. (2024) to explore an interpolated coefficients stabilizer-free weak Galerkin finite element method (IC SFWG-FEM) to solve a one-dimensional semilinear parabolic convection–diffusion equation. Due to the introduction of interpolated coefficients and the design without stabilizers, this method not only possesses the capability of approximating functions and sparsity in the stiffness matrix, but also reduces the complexity of analysis and programming. Theoretical analysis of stability for the semi-discrete IC SFWG finite element scheme is provided. Moreover, numerical experiments are carried out to demonstrate the effectivity and stability.

半线性抛物对流扩散问题的插值系数无稳定器弱 Galerkin 方法
我们继续 Li 等人(2024)的努力,探索一种内插系数无稳定器弱 Galerkin 有限元方法(IC SFWG-FEM)来求解一维半线性抛物对流扩散方程。由于引入了插值系数和无稳定器设计,该方法不仅具有近似函数和刚度矩阵稀疏性的能力,还降低了分析和编程的复杂性。本文对半离散集成电路 SFWG 有限元方案的稳定性进行了理论分析。此外,还进行了数值实验来证明其有效性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信