On the critical points of solutions of PDE in non-convex settings: The case of concentrating solutions

IF 1.7 2区 数学 Q1 MATHEMATICS
F. Gladiali , M. Grossi
{"title":"On the critical points of solutions of PDE in non-convex settings: The case of concentrating solutions","authors":"F. Gladiali ,&nbsp;M. Grossi","doi":"10.1016/j.jfa.2024.110620","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we are concerned with the number of critical points of solutions of nonlinear elliptic equations. We will deal with the case of non-convex, contractile and non-contractile planar domains. We will prove results on the estimate of their number as well as their index. In some cases we will provide the exact calculation. The toy problem concerns the multi-peak solutions of the Gel'fand problem, namely<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext> in </mtext><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext> on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a bounded smooth domain and <span><math><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span> is a small parameter.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we are concerned with the number of critical points of solutions of nonlinear elliptic equations. We will deal with the case of non-convex, contractile and non-contractile planar domains. We will prove results on the estimate of their number as well as their index. In some cases we will provide the exact calculation. The toy problem concerns the multi-peak solutions of the Gel'fand problem, namely{Δu=λeu in Ωu=0 on Ω, where ΩR2 is a bounded smooth domain and λ>0 is a small parameter.

关于非凸环境下 PDE 解的临界点:集中解的情况
本文关注非线性椭圆方程解的临界点数量。我们将讨论非凸、收缩和非收缩平面域的情况。我们将证明关于临界点数量及其指数估计的结果。在某些情况下,我们将提供精确的计算结果。玩具问题涉及 Gel'fand 问题的多峰解,即{-Δu=λeu in Ωu=0 on ∂Ω,其中 Ω⊂R2 是有界光滑域,λ>0 是一个小参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信