{"title":"Functors between Kasparov categories from étale groupoid correspondences","authors":"Alistair Miller","doi":"10.1016/j.jfa.2024.110623","DOIUrl":null,"url":null,"abstract":"<div><p>For an étale correspondence <span><math><mi>Ω</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></math></span> of étale groupoids, we construct an induction functor <span><math><msub><mrow><mi>Ind</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>:</mo><msup><mrow><mi>KK</mi></mrow><mrow><mi>H</mi></mrow></msup><mo>→</mo><msup><mrow><mi>KK</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> between equivariant Kasparov categories. We introduce the crossed product of an <em>H</em>-equivariant correspondence by Ω, and use this to build a natural transformation <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>:</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>⋉</mo><msub><mrow><mi>Ind</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>−</mo><mo>)</mo><mo>⇒</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>⋉</mo><mo>−</mo><mo>)</mo></math></span>. When Ω is proper these constructions naturally sit above an induced map in K-theory <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003112/pdfft?md5=1a5e025b2f1dc2faf5a65e90aee3d000&pid=1-s2.0-S0022123624003112-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003112","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For an étale correspondence of étale groupoids, we construct an induction functor between equivariant Kasparov categories. We introduce the crossed product of an H-equivariant correspondence by Ω, and use this to build a natural transformation . When Ω is proper these constructions naturally sit above an induced map in K-theory .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis