Functors between Kasparov categories from étale groupoid correspondences

IF 1.7 2区 数学 Q1 MATHEMATICS
Alistair Miller
{"title":"Functors between Kasparov categories from étale groupoid correspondences","authors":"Alistair Miller","doi":"10.1016/j.jfa.2024.110623","DOIUrl":null,"url":null,"abstract":"<div><p>For an étale correspondence <span><math><mi>Ω</mi><mo>:</mo><mi>G</mi><mo>→</mo><mi>H</mi></math></span> of étale groupoids, we construct an induction functor <span><math><msub><mrow><mi>Ind</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>:</mo><msup><mrow><mi>KK</mi></mrow><mrow><mi>H</mi></mrow></msup><mo>→</mo><msup><mrow><mi>KK</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> between equivariant Kasparov categories. We introduce the crossed product of an <em>H</em>-equivariant correspondence by Ω, and use this to build a natural transformation <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>:</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>G</mi><mo>⋉</mo><msub><mrow><mi>Ind</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>−</mo><mo>)</mo><mo>⇒</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>H</mi><mo>⋉</mo><mo>−</mo><mo>)</mo></math></span>. When Ω is proper these constructions naturally sit above an induced map in K-theory <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>→</mo><msub><mrow><mi>K</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003112/pdfft?md5=1a5e025b2f1dc2faf5a65e90aee3d000&pid=1-s2.0-S0022123624003112-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003112","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an étale correspondence Ω:GH of étale groupoids, we construct an induction functor IndΩ:KKHKKG between equivariant Kasparov categories. We introduce the crossed product of an H-equivariant correspondence by Ω, and use this to build a natural transformation αΩ:K(GIndΩ)K(H). When Ω is proper these constructions naturally sit above an induced map in K-theory K(C(G))K(C(H)).

卡斯帕罗夫类之间的函数,来自类群对应关系
对于等价群集的等价对应Ω:G→H,我们构建了等价卡斯帕罗夫范畴之间的归纳函数 IndΩ:KKH→KKG。我们用 Ω 引入 H 等价对应的交叉积,并用它来建立自然变换 αΩ:K⁎(G⋉IndΩ-)⇒K⁎(H⋉-)。当 Ω 是适当的时候,这些构造自然位于 K 理论 K⁎(C⁎(G))→K⁎(C⁎(H)) 的诱导映射之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信