Edge-selective reconfiguration in polarized lattices with magnet-enabled bistability

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luca Iorio , Raffaele Ardito , Stefano Gonella
{"title":"Edge-selective reconfiguration in polarized lattices with magnet-enabled bistability","authors":"Luca Iorio ,&nbsp;Raffaele Ardito ,&nbsp;Stefano Gonella","doi":"10.1016/j.eml.2024.102217","DOIUrl":null,"url":null,"abstract":"<div><p>The signature topological feature of Maxwell lattices is their polarization, which manifests as an unbalance in stiffness between opposite edges of a finite domain. The manifestation of this asymmetry is especially dramatic in the case of soft lattices undergoing large nonlinear deformation under concentrated loads, where the excess of softness at the soft edge can result in the activation of sharp indentations. This study explores how this mechanical dichotomy between edges can be tuned and possibly extremized by working with soft magneto-mechanical metamaterials. The magneto-mechanical coupling is obtained by endowing the lattice sites with permanent magnets, which activate a network of magnetic forces that can interact with – either augmenting or competing with – the elasticity of the material. Specifically, under sufficiently large deformation that macroscopically alters the equilibrium positions of the sites, the attractive forces between the magnets can trigger bistable reconfiguration mechanisms. The strength of such mechanisms depends on the landscapes of elastic reaction forces exhibited by the edges, which are different due to the polarization, and is therefore inherently edge-selective. We show that, on the soft edge, the addition of magnets simply enhances the softness of the edge. In contrast, on the stiff edge, the magnets activate snapping mechanisms that locally reconfigure the cells and produce a lattice response reminiscent of plasticity, characterized by residual deformation that persists upon unloading.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102217"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235243162400097X/pdfft?md5=94e0afe4570a64588f91a61e3fdde933&pid=1-s2.0-S235243162400097X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235243162400097X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The signature topological feature of Maxwell lattices is their polarization, which manifests as an unbalance in stiffness between opposite edges of a finite domain. The manifestation of this asymmetry is especially dramatic in the case of soft lattices undergoing large nonlinear deformation under concentrated loads, where the excess of softness at the soft edge can result in the activation of sharp indentations. This study explores how this mechanical dichotomy between edges can be tuned and possibly extremized by working with soft magneto-mechanical metamaterials. The magneto-mechanical coupling is obtained by endowing the lattice sites with permanent magnets, which activate a network of magnetic forces that can interact with – either augmenting or competing with – the elasticity of the material. Specifically, under sufficiently large deformation that macroscopically alters the equilibrium positions of the sites, the attractive forces between the magnets can trigger bistable reconfiguration mechanisms. The strength of such mechanisms depends on the landscapes of elastic reaction forces exhibited by the edges, which are different due to the polarization, and is therefore inherently edge-selective. We show that, on the soft edge, the addition of magnets simply enhances the softness of the edge. In contrast, on the stiff edge, the magnets activate snapping mechanisms that locally reconfigure the cells and produce a lattice response reminiscent of plasticity, characterized by residual deformation that persists upon unloading.

具有磁致双稳态性的极化晶格中的边缘选择性重构
麦克斯韦晶格的标志性拓扑特征是极化,表现为有限域相对边缘之间的刚度不平衡。当软晶格在集中载荷作用下发生较大的非线性变形时,这种不对称的表现尤为明显,软边缘的过软会导致尖锐压痕的产生。本研究探讨了如何通过使用软磁机械超材料来调整边缘之间的这种机械二分法,并可能将其极端化。磁-机械耦合是通过在晶格位点赋予永磁体来实现的,永磁体可激活磁力网络,与材料的弹性相互作用--或增强或竞争。具体来说,当发生足够大的变形,从宏观上改变了晶格位点的平衡位置时,磁体之间的吸引力就会触发双稳态重构机制。这种机制的强度取决于边缘所表现出的弹性反作用力的地貌,这些地貌因极化而不同,因此具有固有的边缘选择性。我们的研究表明,在软边缘上,磁铁的加入只是增强了边缘的软度。与此相反,在坚硬的边缘,磁铁激活了局部重构细胞的折断机制,并产生一种类似于塑性的晶格反应,其特点是卸载后仍存在残余变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信