{"title":"Bi-Hamiltonian structure of a super KdV equation of Kupershmidt","authors":"","doi":"10.1016/j.aml.2024.109280","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a super Korteweg–de Vries (sKdV) equation proposed by Kupershmidt which possesses a Lax operator with three fully nonlocal terms. The Lax operator is reformulated so that it is of the super constrained modified Kadomtsev–Petviashvili (scmKP) type. By calculating the bi-Hamiltonian structure of the scmKP hierarchy and employing Dirac reduction, we obtain the bi-Hamiltonian structure of the sKdV equation. We also present a spectral problem of its modified system.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study a super Korteweg–de Vries (sKdV) equation proposed by Kupershmidt which possesses a Lax operator with three fully nonlocal terms. The Lax operator is reformulated so that it is of the super constrained modified Kadomtsev–Petviashvili (scmKP) type. By calculating the bi-Hamiltonian structure of the scmKP hierarchy and employing Dirac reduction, we obtain the bi-Hamiltonian structure of the sKdV equation. We also present a spectral problem of its modified system.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.