Andrea Ruggiu , Pier Parpot , Isabel C. Neves , Ana Paula Carvalho , Maria Giorgia Cutrufello , António Maurício Fonseca , Angela Martins , Elisabetta Rombi
{"title":"NiCu-exchanged hierarchical Y and ZSM5 zeolites for the electrochemical oxidation of glycerol","authors":"Andrea Ruggiu , Pier Parpot , Isabel C. Neves , Ana Paula Carvalho , Maria Giorgia Cutrufello , António Maurício Fonseca , Angela Martins , Elisabetta Rombi","doi":"10.1016/j.micromeso.2024.113300","DOIUrl":null,"url":null,"abstract":"<div><p>Two hierarchical Y and ZSM5 zeolites were prepared with a surfactant-mediated desilication method. Both the conventional and hierarchical forms were used to prepare NiCu-zeolites via the ion-exchange method. All samples were characterised using different techniques. For the hierarchical materials, N<sub>2</sub> physisorption and TEM analyses confirmed the appearance of mesoporosity. Transition metal-containing zeolites were used as novel electrocatalysts for the glycerol electrochemical oxidation reaction (GEOR) in the form of modified electrodes. Cyclic voltammetry was used to investigate the surface properties of the modified electrodes and their activity toward GEOR at different pH provided by different supporting electrolyte solutions, indicating alkaline conditions as the most promising ones. The hierarchical forms showed a remarkable higher activity compared to the conventional ones, together with appreciable yields towards partially oxidized products of industrial interest. Noteworthy, a stable current higher than 10 mA was generated, which is interesting to produce H<sub>2</sub> by coupling GEOR and hydrogen evolution reaction.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"379 ","pages":"Article 113300"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003226","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Two hierarchical Y and ZSM5 zeolites were prepared with a surfactant-mediated desilication method. Both the conventional and hierarchical forms were used to prepare NiCu-zeolites via the ion-exchange method. All samples were characterised using different techniques. For the hierarchical materials, N2 physisorption and TEM analyses confirmed the appearance of mesoporosity. Transition metal-containing zeolites were used as novel electrocatalysts for the glycerol electrochemical oxidation reaction (GEOR) in the form of modified electrodes. Cyclic voltammetry was used to investigate the surface properties of the modified electrodes and their activity toward GEOR at different pH provided by different supporting electrolyte solutions, indicating alkaline conditions as the most promising ones. The hierarchical forms showed a remarkable higher activity compared to the conventional ones, together with appreciable yields towards partially oxidized products of industrial interest. Noteworthy, a stable current higher than 10 mA was generated, which is interesting to produce H2 by coupling GEOR and hydrogen evolution reaction.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.