Jinying Lin , Jiao Fang , Jing Zhou , Manlin Qi , Yujia Shi , Chunyan Li , Xiaolin Sun , Biao Dong , Lin Wang
{"title":"NIR-II triggered Cu(I) phosphide for chemodynamic and photothermal periodontitis treatment: Efficient reduction of bacterial co-aggregation","authors":"Jinying Lin , Jiao Fang , Jing Zhou , Manlin Qi , Yujia Shi , Chunyan Li , Xiaolin Sun , Biao Dong , Lin Wang","doi":"10.1016/j.actbio.2024.08.013","DOIUrl":null,"url":null,"abstract":"<div><div>The synergy between chemodynamic therapy (CDT) and photothermal therapy (PTT) offers a promising antimicrobial strategy for periodontitis, yet faces challenges like complex material structure and limited NIR-I light penetration. Additionally, low endogenous H<sub>2</sub>O<sub>2</sub> levels in biofilm and a focus on bacterial eradication over colonization prevention limit current treatments. To address these issues, we newly introduce a single-material system (Cu<sub>3</sub>P@PAH@Lox) that integrates dual functionalities to synergistically enhance antimicrobial effects and significantly reduce pathogen co-aggregation. This system utilizes PTT to increase local temperature, boosting •OH production in CDT while downregulating heat shock proteins to enhance PTT efficacy, forming a self-reinforcing feedback loop. Lactate oxidase (Lox) is employed to convert lactate—a metabolite in periodontal biofilm—into H<sub>2</sub>O<sub>2</sub>, further amplifying CDT's potential. <em>In vitro</em> Cu<sub>3</sub>P@PAH@Lox demonstrates a remarkable synergistic effect against dual-species biofilms by more than 2-log reduction of colony-forming unit. Moreover, Cu<sub>3</sub>P@PAH@Lox exhibits outstanding synergistic antibacterial performances to alleviate inflammation and destruction of tissue <em>in vivo</em> periodontitis model. Furthermore, the mechanism of pathogen co-aggregation disruption by PTT is verified <em>via</em> the Cbe-Ltp1-Ptk1-fimA signaling pathway. This single-material multimodal system we have herein demonstrated for the first time marks a significant advancement in periodontitis treatment, eradicating microbes and preventing bacterial colonization, offering a path to comprehensive periodontal care.</div></div><div><h3>Statement of significance</h3><div>The synergy between chemodynamic therapy (CDT) and photothermal therapy (PTT) has been considered a promising therapy for periodontitis. Yet, facing challenges, the complex material structure, limited NIR-I light penetration, low endogenous H<sub>2</sub>O<sub>2</sub> level in biofilm, and a focus on bacterial eradication over colonization prevention are still insufficient. This study pioneers a unique, single-material system (Cu<sub>3</sub>P@PAH@Lox) that synergistically enhances antimicrobial effects and substantially curtails pathogen co-aggregation, advancing periodontitis therapy. By exploiting PTT to elevate local temperatures, thereby increasing hydroxyl radical production in CDT and concurrently suppressing heat shock proteins, the system establishes a potent, self-enhancing loop. Furthermore, lactate oxidase is innovatively utilized to convert lactate from periodontal biofilm into hydrogen peroxide, augmenting the efficacy of CDT. The introduction of Cu<sub>3</sub>P@PAH@Lox is poised to revolutionize periodontitis treatment, eliminating microbes and impeding bacterial colonization, thereby charting a course for comprehensive periodontal management.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"187 ","pages":"Pages 396-408"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124004574","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The synergy between chemodynamic therapy (CDT) and photothermal therapy (PTT) offers a promising antimicrobial strategy for periodontitis, yet faces challenges like complex material structure and limited NIR-I light penetration. Additionally, low endogenous H2O2 levels in biofilm and a focus on bacterial eradication over colonization prevention limit current treatments. To address these issues, we newly introduce a single-material system (Cu3P@PAH@Lox) that integrates dual functionalities to synergistically enhance antimicrobial effects and significantly reduce pathogen co-aggregation. This system utilizes PTT to increase local temperature, boosting •OH production in CDT while downregulating heat shock proteins to enhance PTT efficacy, forming a self-reinforcing feedback loop. Lactate oxidase (Lox) is employed to convert lactate—a metabolite in periodontal biofilm—into H2O2, further amplifying CDT's potential. In vitro Cu3P@PAH@Lox demonstrates a remarkable synergistic effect against dual-species biofilms by more than 2-log reduction of colony-forming unit. Moreover, Cu3P@PAH@Lox exhibits outstanding synergistic antibacterial performances to alleviate inflammation and destruction of tissue in vivo periodontitis model. Furthermore, the mechanism of pathogen co-aggregation disruption by PTT is verified via the Cbe-Ltp1-Ptk1-fimA signaling pathway. This single-material multimodal system we have herein demonstrated for the first time marks a significant advancement in periodontitis treatment, eradicating microbes and preventing bacterial colonization, offering a path to comprehensive periodontal care.
Statement of significance
The synergy between chemodynamic therapy (CDT) and photothermal therapy (PTT) has been considered a promising therapy for periodontitis. Yet, facing challenges, the complex material structure, limited NIR-I light penetration, low endogenous H2O2 level in biofilm, and a focus on bacterial eradication over colonization prevention are still insufficient. This study pioneers a unique, single-material system (Cu3P@PAH@Lox) that synergistically enhances antimicrobial effects and substantially curtails pathogen co-aggregation, advancing periodontitis therapy. By exploiting PTT to elevate local temperatures, thereby increasing hydroxyl radical production in CDT and concurrently suppressing heat shock proteins, the system establishes a potent, self-enhancing loop. Furthermore, lactate oxidase is innovatively utilized to convert lactate from periodontal biofilm into hydrogen peroxide, augmenting the efficacy of CDT. The introduction of Cu3P@PAH@Lox is poised to revolutionize periodontitis treatment, eliminating microbes and impeding bacterial colonization, thereby charting a course for comprehensive periodontal management.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.