{"title":"Finite element analysis of feeding in red and gray squirrels (Sciurus vulgaris and Sciurus carolinensis).","authors":"Philip G Cox, Peter J Watson","doi":"10.1002/ar.25564","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive gray squirrels (Sciurus carolinensis) have replaced the native red squirrel (Sciurus vulgaris) across much of Great Britain over the last century. Several factors have been proposed to underlie this replacement, but here we investigated the potential for dietary competition in which gray squirrels have better feeding performance than reds and are thus able to extract nutrition from food more efficiently. In this scenario, we hypothesized that red squirrels would show higher stress, strain, and deformation across the skull than gray squirrels. To test our hypotheses, we created finite element models of the skull of a red and a gray squirrel and loaded them to simulate biting at the incisor, at two different gapes, and at the molar. The results showed similar distributions of strains and von Mises stresses in the two species, but higher stress and strain magnitudes in the red squirrel, especially during molar biting. Few differences were seen in stress and strain distributions or magnitudes between the two incisor gapes. A geometric morphometric analysis showed greater deformations in the red squirrel skull at all bites and gapes. These results are consistent with our hypothesis and indicate increased biomechanical performance of the skull in gray squirrels, allowing them to access and process food items more efficiently than red squirrels.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25564","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Invasive gray squirrels (Sciurus carolinensis) have replaced the native red squirrel (Sciurus vulgaris) across much of Great Britain over the last century. Several factors have been proposed to underlie this replacement, but here we investigated the potential for dietary competition in which gray squirrels have better feeding performance than reds and are thus able to extract nutrition from food more efficiently. In this scenario, we hypothesized that red squirrels would show higher stress, strain, and deformation across the skull than gray squirrels. To test our hypotheses, we created finite element models of the skull of a red and a gray squirrel and loaded them to simulate biting at the incisor, at two different gapes, and at the molar. The results showed similar distributions of strains and von Mises stresses in the two species, but higher stress and strain magnitudes in the red squirrel, especially during molar biting. Few differences were seen in stress and strain distributions or magnitudes between the two incisor gapes. A geometric morphometric analysis showed greater deformations in the red squirrel skull at all bites and gapes. These results are consistent with our hypothesis and indicate increased biomechanical performance of the skull in gray squirrels, allowing them to access and process food items more efficiently than red squirrels.