Enhancing Tribological Characteristics of Titanium Grade-5 Alloy through HVOF Thermal-Sprayed WC-Co Nano Coatings by TOPSIS and Golden Jack Optimization Algorithm.
IF 2 4区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
S Thirumalvalavan, G Perumal, N Senthilkumar, S Selvarasu
{"title":"Enhancing Tribological Characteristics of Titanium Grade-5 Alloy through HVOF Thermal-Sprayed WC-Co Nano Coatings by TOPSIS and Golden Jack Optimization Algorithm.","authors":"S Thirumalvalavan, G Perumal, N Senthilkumar, S Selvarasu","doi":"10.2174/0118722105306841240808092616","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thermal spray coatings have emerged as a pivotal technology in materials engineering, primarily for augmenting the characteristics related to wear and tribology of metallic substrates.</p><p><strong>Method: </strong>This study aimes to delve into applying High-Velocity Oxygen Fuel (HVOF) thermalsprayed WC-Co nanocoatings on Titanium Grade-5 alloy (Ti64). The coating process, utilizing nano-sized WC-Co powder, undergoes systematic optimization of HVOF parameters, encompassing the flow rate of carrier gas, powder feed rate, and nozzle distance. Experimental assessments via Pin-on-Disc (PoD) tests encompass Loss of Wear (WL), Friction Coefficient (CoF), and Frictional Force (FF). Later, an exhaustive optimization of responses is conductede using the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) method and the golden jack optimization algorithm (GJOA).</p><p><strong>Results: </strong>Outcomes show a substantial increase in WL, CoF, and FF with a rise in the carrier gas and powder feed rate. However, with increasing spraying distance of powder, the WL, CoF, and FF tend to lower due to higher bonding, which leads to increased wear resistance. The ideal parametric settings achieved from TOPSIS and GJOA are 245 mm of spray distance, 30 gpm rate of powder feed, and 11 lpm of carrier gas flow rate. The powder feed rate contributes 88.99% to the control action, as seen from ANOVA.</p><p><strong>Conclusion: </strong>The confirmation experiment presents that the WL, CoF, and FF output responses are 42.33, 27.97, and 9.38% less than the mean of experimental data. These results highlight the HVOF process in spraying WC-Co nanocoatings to fortify the durability and performance of Ti64 alloy that can be patented for diverse engineering applications.</p>","PeriodicalId":49324,"journal":{"name":"Recent Patents on Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0118722105306841240808092616","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Thermal spray coatings have emerged as a pivotal technology in materials engineering, primarily for augmenting the characteristics related to wear and tribology of metallic substrates.
Method: This study aimes to delve into applying High-Velocity Oxygen Fuel (HVOF) thermalsprayed WC-Co nanocoatings on Titanium Grade-5 alloy (Ti64). The coating process, utilizing nano-sized WC-Co powder, undergoes systematic optimization of HVOF parameters, encompassing the flow rate of carrier gas, powder feed rate, and nozzle distance. Experimental assessments via Pin-on-Disc (PoD) tests encompass Loss of Wear (WL), Friction Coefficient (CoF), and Frictional Force (FF). Later, an exhaustive optimization of responses is conductede using the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) method and the golden jack optimization algorithm (GJOA).
Results: Outcomes show a substantial increase in WL, CoF, and FF with a rise in the carrier gas and powder feed rate. However, with increasing spraying distance of powder, the WL, CoF, and FF tend to lower due to higher bonding, which leads to increased wear resistance. The ideal parametric settings achieved from TOPSIS and GJOA are 245 mm of spray distance, 30 gpm rate of powder feed, and 11 lpm of carrier gas flow rate. The powder feed rate contributes 88.99% to the control action, as seen from ANOVA.
Conclusion: The confirmation experiment presents that the WL, CoF, and FF output responses are 42.33, 27.97, and 9.38% less than the mean of experimental data. These results highlight the HVOF process in spraying WC-Co nanocoatings to fortify the durability and performance of Ti64 alloy that can be patented for diverse engineering applications.
期刊介绍:
Recent Patents on Nanotechnology publishes full-length/mini reviews and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of nanotechnology. A selection of important and recent patents on nanotechnology is also included in the journal. The journal is essential reading for all researchers involved in nanotechnology.