Statistical data analysis of x-ray spectroscopy data enabled by neural network accelerated Bayesian inference.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
M J MacDonald, B A Hammel, B Bachmann, M Bitter, P Efthimion, J A Gaffney, L Gao, B D Hammel, K W Hill, B F Kraus, A G MacPhee, L Peterson, M B Schneider, H A Scott, D B Thorn, C B Yeamans
{"title":"Statistical data analysis of x-ray spectroscopy data enabled by neural network accelerated Bayesian inference.","authors":"M J MacDonald, B A Hammel, B Bachmann, M Bitter, P Efthimion, J A Gaffney, L Gao, B D Hammel, K W Hill, B F Kraus, A G MacPhee, L Peterson, M B Schneider, H A Scott, D B Thorn, C B Yeamans","doi":"10.1063/5.0219464","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian inference applied to x-ray spectroscopy data analysis enables uncertainty quantification necessary to rigorously test theoretical models. However, when comparing to data, detailed atomic physics and radiation transfer calculations of x-ray emission from non-uniform plasma conditions are typically too slow to be performed in line with statistical sampling methods, such as Markov Chain Monte Carlo sampling. Furthermore, differences in transition energies and x-ray opacities often make direct comparisons between simulated and measured spectra unreliable. We present a spectral decomposition method that allows for corrections to line positions and bound-bound opacities to best fit experimental data, with the goal of providing quantitative feedback to improve the underlying theoretical models and guide future experiments. In this work, we use a neural network (NN) surrogate model to replace spectral calculations of isobaric hot-spots created in Kr-doped implosions at the National Ignition Facility. The NN was trained on calculations of x-ray spectra using an isobaric hot-spot model post-processed with Cretin, a multi-species atomic kinetics and radiation code. The speedup provided by the NN model to generate x-ray emission spectra enables statistical analysis of parameterized models with sufficient detail to accurately represent the physical system and extract the plasma parameters of interest.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219464","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian inference applied to x-ray spectroscopy data analysis enables uncertainty quantification necessary to rigorously test theoretical models. However, when comparing to data, detailed atomic physics and radiation transfer calculations of x-ray emission from non-uniform plasma conditions are typically too slow to be performed in line with statistical sampling methods, such as Markov Chain Monte Carlo sampling. Furthermore, differences in transition energies and x-ray opacities often make direct comparisons between simulated and measured spectra unreliable. We present a spectral decomposition method that allows for corrections to line positions and bound-bound opacities to best fit experimental data, with the goal of providing quantitative feedback to improve the underlying theoretical models and guide future experiments. In this work, we use a neural network (NN) surrogate model to replace spectral calculations of isobaric hot-spots created in Kr-doped implosions at the National Ignition Facility. The NN was trained on calculations of x-ray spectra using an isobaric hot-spot model post-processed with Cretin, a multi-species atomic kinetics and radiation code. The speedup provided by the NN model to generate x-ray emission spectra enables statistical analysis of parameterized models with sufficient detail to accurately represent the physical system and extract the plasma parameters of interest.

利用神经网络加速贝叶斯推理对 X 射线光谱数据进行统计数据分析。
将贝叶斯推理应用于 X 射线光谱数据分析,可以对不确定性进行量化,从而对理论模型进行严格测试。然而,在与数据进行比较时,非均匀等离子体条件下 X 射线发射的详细原子物理和辐射传输计算通常太慢,无法按照马尔可夫链蒙特卡罗采样等统计采样方法进行。此外,跃迁能量和 X 射线不透明性的差异通常会使模拟光谱与测量光谱之间的直接比较变得不可靠。我们提出了一种光谱分解方法,允许对线位置和边界不透明性进行修正,以最佳地拟合实验数据,目的是提供定量反馈,以改进基础理论模型并指导未来的实验。在这项工作中,我们使用神经网络(NN)代理模型来替代国家点火装置在掺 Kr 内爆中产生的等压热点的光谱计算。NN 是在使用等压热点模型计算 X 射线光谱的基础上训练的,该模型是用 Cretin(一种多物种原子动力学和辐射代码)进行后处理的。利用 NN 模型生成 X 射线发射光谱的速度加快,可以对参数化模型进行统计分析,这些模型具有足够的细节,能够准确地表示物理系统并提取感兴趣的等离子体参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信