Accelerating AI for science: open data science for science.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2024-08-21 eCollection Date: 2024-08-01 DOI:10.1098/rsos.231130
Neil D Lawrence, Jessica Montgomery
{"title":"Accelerating AI for science: open data science for science.","authors":"Neil D Lawrence, Jessica Montgomery","doi":"10.1098/rsos.231130","DOIUrl":null,"url":null,"abstract":"<p><p>Aspirations for artificial intelligence (AI) as a catalyst for scientific discovery are growing. High-profile successes deploying AI in domains such as protein folding have highlighted AI's potential to unlock new frontiers of scientific knowledge. However, the pathway from AI innovation to deployment in research is not linear. Those seeking to drive a new wave of scientific progress through the application of AI require a diffusion engine that can enhance AI adoption across disciplines. Lessons from previous waves of technology change, experiences of deploying AI in real-world contexts and an emerging research agenda from the AI for science community suggest a framework for accelerating AI adoption. This framework requires action to build supply chains of ideas between disciplines; rapidly transfer technological capabilities through open research; create AI tools that empower researchers; and embed effective data stewardship. Together, these interventions can cultivate an environment of open data science that deliver the benefits of AI across the sciences.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.231130","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aspirations for artificial intelligence (AI) as a catalyst for scientific discovery are growing. High-profile successes deploying AI in domains such as protein folding have highlighted AI's potential to unlock new frontiers of scientific knowledge. However, the pathway from AI innovation to deployment in research is not linear. Those seeking to drive a new wave of scientific progress through the application of AI require a diffusion engine that can enhance AI adoption across disciplines. Lessons from previous waves of technology change, experiences of deploying AI in real-world contexts and an emerging research agenda from the AI for science community suggest a framework for accelerating AI adoption. This framework requires action to build supply chains of ideas between disciplines; rapidly transfer technological capabilities through open research; create AI tools that empower researchers; and embed effective data stewardship. Together, these interventions can cultivate an environment of open data science that deliver the benefits of AI across the sciences.

为科学加速人工智能:为科学开放数据科学。
人们对人工智能(AI)作为科学发现催化剂的渴望与日俱增。在蛋白质折叠等领域部署人工智能所取得的令人瞩目的成功,凸显了人工智能开启科学知识新领域的潜力。然而,从人工智能创新到应用于研究的过程并不是线性的。那些希望通过应用人工智能推动新一轮科学进步的人,需要一个能够促进人工智能在各学科中应用的传播引擎。从以往的技术变革浪潮中汲取的经验教训、在现实世界中部署人工智能的经验以及人工智能促进科学界的新兴研究议程,都为加速人工智能的应用提出了一个框架。这一框架要求采取行动,在学科之间建立思想供应链;通过开放研究快速转移技术能力;创建增强研究人员能力的人工智能工具;以及嵌入有效的数据管理。这些干预措施结合在一起,就能营造一个开放数据科学的环境,让人工智能为各门科学带来益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信