{"title":"Exosomal GDNF from Bone Marrow Mesenchymal Stem Cells Moderates Neuropathic Pain in a Rat Model of Chronic Constriction Injury.","authors":"Xuelei Zhang, Huan Liu, Xiaolei Xiu, Jibo Cheng, Tong Li, Ping Wang, Lili Men, Junru Qiu, Yanyan Jin, Jianyong Zhao","doi":"10.1007/s12017-024-08800-6","DOIUrl":null,"url":null,"abstract":"<p><p>Both of exosomes derived from mesenchymal stem cells (MSCs) and glial cell line-derived neurotrophic factor (GDNF) show potential for the treatment of neuropathic pain. Here, the analgesic effects of exosomes derived from bone marrow MSCs (BMSCs) were investigated. BMSCs-derived exosomes were isolated and characterized. Chronic constriction injury (CCI) was constructed to induce neuropathic pain in rats, which were then treated with exosomes. Pain behaviors were evaluated by measuring paw withdrawal thresholds and latency. The changes of key proteins, including cytokines, were explored using Western blot and ELISA. Administration of BMSCs-derived exosomes alleviated neuropathic pain, as demonstrated by the decrease of thermal hyperalgesia and mechanical allodynia, as well as the reduced secretion of pro-inflammatory cytokines in CCI rats. These effects were comparable to the treatment of GDNF alone. Mechanically, the exosomes suppressed the CCI-induced activation of TLR2/MyD88/NF-κB signaling pathway, while GDNF knockdown impaired their analgesic effects on CCI rat. BMSCs-derived exosomes may alleviate CCI-induced neuropathic pain and inflammation in rats by transporting GDNF.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08800-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Both of exosomes derived from mesenchymal stem cells (MSCs) and glial cell line-derived neurotrophic factor (GDNF) show potential for the treatment of neuropathic pain. Here, the analgesic effects of exosomes derived from bone marrow MSCs (BMSCs) were investigated. BMSCs-derived exosomes were isolated and characterized. Chronic constriction injury (CCI) was constructed to induce neuropathic pain in rats, which were then treated with exosomes. Pain behaviors were evaluated by measuring paw withdrawal thresholds and latency. The changes of key proteins, including cytokines, were explored using Western blot and ELISA. Administration of BMSCs-derived exosomes alleviated neuropathic pain, as demonstrated by the decrease of thermal hyperalgesia and mechanical allodynia, as well as the reduced secretion of pro-inflammatory cytokines in CCI rats. These effects were comparable to the treatment of GDNF alone. Mechanically, the exosomes suppressed the CCI-induced activation of TLR2/MyD88/NF-κB signaling pathway, while GDNF knockdown impaired their analgesic effects on CCI rat. BMSCs-derived exosomes may alleviate CCI-induced neuropathic pain and inflammation in rats by transporting GDNF.