Accurate and efficient open-source implementation of domain-based local pair natural orbital (DLPNO) coupled-cluster theory using a t1-transformed Hamiltonian.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Andy Jiang, Zachary L Glick, David Poole, Justin M Turney, C David Sherrill, Henry F Schaefer
{"title":"Accurate and efficient open-source implementation of domain-based local pair natural orbital (DLPNO) coupled-cluster theory using a t1-transformed Hamiltonian.","authors":"Andy Jiang, Zachary L Glick, David Poole, Justin M Turney, C David Sherrill, Henry F Schaefer","doi":"10.1063/5.0219963","DOIUrl":null,"url":null,"abstract":"<p><p>We present an efficient, open-source formulation for coupled-cluster theory through perturbative triples with domain-based local pair natural orbitals [DLPNO-CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found in the ORCA package, the most expensive integral generation and contraction steps associated with the CCSD(T) method are linear-scaling. In this work, we show that the t1-transformed Hamiltonian allows for a less complex algorithm when evaluating the local CCSD(T) energy without compromising efficiency or accuracy. Our algorithm yields sub-kJ mol-1 deviations for relative energies when compared with canonical CCSD(T), with typical errors being on the order of 0.1 kcal mol-1, using our TightPNO parameters. We extensively tested and optimized our algorithm and parameters for non-covalent interactions, which have been the most difficult interaction to model for orbital (PNO)-based methods historically. To highlight the capabilities of our code, we tested it on large water clusters, as well as insulin (787 atoms).</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0219963","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present an efficient, open-source formulation for coupled-cluster theory through perturbative triples with domain-based local pair natural orbitals [DLPNO-CCSD(T)]. Similar to the implementation of the DLPNO-CCSD(T) method found in the ORCA package, the most expensive integral generation and contraction steps associated with the CCSD(T) method are linear-scaling. In this work, we show that the t1-transformed Hamiltonian allows for a less complex algorithm when evaluating the local CCSD(T) energy without compromising efficiency or accuracy. Our algorithm yields sub-kJ mol-1 deviations for relative energies when compared with canonical CCSD(T), with typical errors being on the order of 0.1 kcal mol-1, using our TightPNO parameters. We extensively tested and optimized our algorithm and parameters for non-covalent interactions, which have been the most difficult interaction to model for orbital (PNO)-based methods historically. To highlight the capabilities of our code, we tested it on large water clusters, as well as insulin (787 atoms).

使用 t1 变换哈密顿方程,准确高效地开源实现基于域的局部对天然轨道(DLPNO)耦合簇理论。
我们通过基于域的局部对自然轨道的扰动三元组[DLPNO-CCSD(T)],提出了一种高效、开源的耦合簇理论公式。与 ORCA 软件包中的 DLPNO-CCSD(T) 方法类似,CCSD(T) 方法最昂贵的积分生成和收缩步骤是线性缩放。在这项工作中,我们证明了在评估局部 CCSD(T)能量时,t1 变换哈密尔顿允许采用一种不那么复杂的算法,而不会影响效率或准确性。使用我们的 TightPNO 参数,与典型 CCSD(T) 相比,我们的算法产生了低于 kJ mol-1 的相对能量偏差,典型误差约为 0.1 kcal mol-1。我们对非共价相互作用的算法和参数进行了广泛的测试和优化,非共价相互作用是基于轨道(PNO)方法建模最困难的相互作用。为了突出我们代码的能力,我们在大型水团和胰岛素(787 个原子)上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信