Physiological significance of the two isoforms of initiator tRNAs in Escherichia coli.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Journal of Bacteriology Pub Date : 2024-09-19 Epub Date: 2024-08-22 DOI:10.1128/jb.00251-24
Amit Kumar Sahu, Riyaz Ahmad Shah, Divya Nashier, Prafful Sharma, Rajagopal Varada, Kuldeep Lahry, Sudhir Singh, Sunil Shetty, Tanweer Hussain, Umesh Varshney
{"title":"Physiological significance of the two isoforms of initiator tRNAs in <i>Escherichia coli</i>.","authors":"Amit Kumar Sahu, Riyaz Ahmad Shah, Divya Nashier, Prafful Sharma, Rajagopal Varada, Kuldeep Lahry, Sudhir Singh, Sunil Shetty, Tanweer Hussain, Umesh Varshney","doi":"10.1128/jb.00251-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Escherichia coli</i> possesses four initiator tRNA (i-tRNA) genes, three of which are present together as <i>metZWV</i> and the fourth one as <i>metY</i>. In <i>E. coli</i> B, all four genes (<i>metZWV</i> and <i>metY</i>) encode i-tRNA<sup>fMet1</sup>, in which the G at position 46 is modified to m<sup>7</sup>G46 by TrmB (m<sup>7</sup>G methyltransferase). However, in <i>E. coli</i> K, because of a single-nucleotide polymorphism, <i>metY</i> encodes a variant, i-tRNA<sup>fMet2</sup>, having an A in place of m<sup>7</sup>G46. We generated <i>E. coli</i> strains to explore the importance of this polymorphism in i-tRNAs. The strains were sustained either on <i>metY</i><sub>A46</sub> (<i>metY</i> of <i>E. coli</i> K origin encoding i-tRNA<sup>fMet2</sup>) or its derivative <i>metY</i><sub>G46</sub> (encoding i-tRNA<sup>fMet1</sup>) in single (chromosomal) or plasmid-borne copies. We show that the strains sustained on i-tRNA<sup>fMet1</sup> have a growth fitness advantage over those sustained on i-tRNA<sup>fMet2</sup>. The growth fitness advantages are more pronounced for the strains sustained on i-tRNA<sup>fMet1</sup> in nutrient-rich media than in nutrient-poor media. The growth fitness of the strains correlates well with the relative stabilities of the i-tRNAs <i>in vivo</i>. Furthermore, the atomistic molecular dynamics simulations support the higher stability of i-tRNA<sup>fMet1</sup> than that of i-tRNA<sup>fMet2</sup>. The stability of i-tRNA<sup>fMet1</sup> remains unaffected upon the deletion of TrmB. These studies highlight how <i>metY</i><sub>G46</sub> and <i>metY</i><sub>A46</sub> alleles might influence the growth fitness of <i>E. coli</i> under certain nutrient-limiting conditions.</p><p><strong>Importance: </strong><i>Escherichia coli</i> harbors four initiator tRNA (i-tRNA) genes: three of these at <i>metZWV</i> and the fourth one at <i>metY</i> loci. In <i>E. coli</i> B, all four genes encode i-tRNA<sup>fMet1</sup>. In <i>E. coli</i> K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNA<sup>fMet2</sup>, having an A in place of G at position 46 of i-tRNA sequence in metY. We show that G46 confers stability to i-tRNA<sup>fMet1</sup>. The strains sustained on i-tRNA<sup>fMet1</sup> have a growth fitness advantage over those sustained on i-tRNA<sup>fMet2</sup>. Strains harboring <i>metY</i><sub>G46</sub> (B mimic) or <i>metY</i><sub>A46</sub> (K mimic) show that while in the nutrient-rich media, the K mimic is outcompeted rapidly; in the nutrient-poor medium, the K mimic is outcompeted less rapidly.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00251-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Escherichia coli possesses four initiator tRNA (i-tRNA) genes, three of which are present together as metZWV and the fourth one as metY. In E. coli B, all four genes (metZWV and metY) encode i-tRNAfMet1, in which the G at position 46 is modified to m7G46 by TrmB (m7G methyltransferase). However, in E. coli K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNAfMet2, having an A in place of m7G46. We generated E. coli strains to explore the importance of this polymorphism in i-tRNAs. The strains were sustained either on metYA46 (metY of E. coli K origin encoding i-tRNAfMet2) or its derivative metYG46 (encoding i-tRNAfMet1) in single (chromosomal) or plasmid-borne copies. We show that the strains sustained on i-tRNAfMet1 have a growth fitness advantage over those sustained on i-tRNAfMet2. The growth fitness advantages are more pronounced for the strains sustained on i-tRNAfMet1 in nutrient-rich media than in nutrient-poor media. The growth fitness of the strains correlates well with the relative stabilities of the i-tRNAs in vivo. Furthermore, the atomistic molecular dynamics simulations support the higher stability of i-tRNAfMet1 than that of i-tRNAfMet2. The stability of i-tRNAfMet1 remains unaffected upon the deletion of TrmB. These studies highlight how metYG46 and metYA46 alleles might influence the growth fitness of E. coli under certain nutrient-limiting conditions.

Importance: Escherichia coli harbors four initiator tRNA (i-tRNA) genes: three of these at metZWV and the fourth one at metY loci. In E. coli B, all four genes encode i-tRNAfMet1. In E. coli K, because of a single-nucleotide polymorphism, metY encodes a variant, i-tRNAfMet2, having an A in place of G at position 46 of i-tRNA sequence in metY. We show that G46 confers stability to i-tRNAfMet1. The strains sustained on i-tRNAfMet1 have a growth fitness advantage over those sustained on i-tRNAfMet2. Strains harboring metYG46 (B mimic) or metYA46 (K mimic) show that while in the nutrient-rich media, the K mimic is outcompeted rapidly; in the nutrient-poor medium, the K mimic is outcompeted less rapidly.

大肠杆菌中两种启动子 tRNA 异构体的生理意义。
大肠杆菌有四个启动子 tRNA(i-tRNA)基因,其中三个基因以 metZWV 的形式存在,第四个基因以 metY 的形式存在。在大肠杆菌 B 中,所有四个基因(metZWV 和 metY)都编码 i-tRNAfMet1,其中第 46 位的 G 被 TrmB(m7G 甲基转移酶)修饰为 m7G46。然而,在大肠杆菌 K 中,由于单核苷酸多态性,metY 编码的 i-tRNAfMet2 变体在 m7G46 位置上有一个 A。我们生成了大肠杆菌菌株,以探索 i-tRNA 中这种多态性的重要性。这些菌株以单个(染色体)拷贝或质粒拷贝持续存在于 metYA46(编码 i-tRNAfMet2 的大肠杆菌 K 源 metY)或其衍生物 metYG46(编码 i-tRNAfMet1)上。我们的研究表明,与依赖 i-tRNAfMet2 的菌株相比,依赖 i-tRNAfMet1 的菌株具有生长适宜性优势。在营养丰富的培养基中,以 i-tRNAfMet1 为载体的菌株比在营养缺乏的培养基中具有更明显的生长适宜性优势。菌株的生长适应性与 i-tRNA 在体内的相对稳定性密切相关。此外,原子分子动力学模拟支持 i-tRNAfMet1 比 i-tRNAfMet2 具有更高的稳定性。删除 TrmB 后,i-tRNAfMet1 的稳定性仍然不受影响。这些研究强调了在某些营养限制条件下,metYG46 和 metYA46 等位基因如何影响大肠杆菌的生长适应性:大肠杆菌含有四个启动子 tRNA(i-tRNA)基因:其中三个位于 metZWV 位点,第四个位于 metY 位点。在大肠杆菌 B 中,所有四个基因都编码 i-tRNAfMet1 。在大肠杆菌 K 中,由于单核苷酸多态性,metY 编码一个变体 i-tRNAfMet2,在 metY 中 i-tRNA 序列的第 46 位用 A 代替了 G。我们发现,G46赋予了 i-tRNAfMet1 稳定性。与 i-tRNAfMet2 菌株相比,i-tRNAfMet1 菌株具有生长适应性优势。携带 metYG46(B 拟态)或 metYA46(K 拟态)的菌株显示,在营养丰富的培养基中,K 拟态被迅速淘汰;而在营养缺乏的培养基中,K 拟态被淘汰的速度较慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信