Benoît Marsaux, Frédéric Moens, Gies Vandevijver, Massimo Marzorati, Tom van de Wiele
{"title":"Candida species-specific colonization in the healthy and impaired human gastrointestinal tract as simulated using the Mucosal Ileum-SHIME® model.","authors":"Benoît Marsaux, Frédéric Moens, Gies Vandevijver, Massimo Marzorati, Tom van de Wiele","doi":"10.1093/femsec/fiae113","DOIUrl":null,"url":null,"abstract":"<p><p>Candida species primarily exist as harmless commensals in the gastrointestinal tract of warm-blooded animals. However, they can also cause life-threatening infections, which are often associated with gut microbial dysbiosis. Identifying the microbial actors that restrict Candida to commensalism remains a significant challenge. In vitro models could enable a mechanistic study of the interactions between Candida and simulated colon microbiomes. Therefore, this study aimed to elucidate the spatial and temporal colonization kinetics of specific Candida, including C. albicans, C. tropicalis, and C. parapsilosis, and their relative Nakaseomyces glabratus, by using an adapted SHIME® model, simulating the ileum, and proximal and distal colons. We monitored fungal and bacterial colonization kinetics under conditions of eubiosis (commensal lifestyle) and antibiotic-induced dysbiosis (pathogenic lifestyle). Our findings highlighted the variability in the colonization potential of Candida species across different intestinal regions. The ileum compartment proved to be the most favourable environment for C. albicans and C. parapsilosis under conditions of eubiosis. Antibiotic-induced dysbiosis resulted in resurgence of opportunistic Candida species, especially C. tropicalis and C. albicans. Future research should focus on identifying specific bacterial species influencing Candida colonization resistance and explore the long-term effects of antibiotics on the mycobiome and bacteriome.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae113","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Candida species primarily exist as harmless commensals in the gastrointestinal tract of warm-blooded animals. However, they can also cause life-threatening infections, which are often associated with gut microbial dysbiosis. Identifying the microbial actors that restrict Candida to commensalism remains a significant challenge. In vitro models could enable a mechanistic study of the interactions between Candida and simulated colon microbiomes. Therefore, this study aimed to elucidate the spatial and temporal colonization kinetics of specific Candida, including C. albicans, C. tropicalis, and C. parapsilosis, and their relative Nakaseomyces glabratus, by using an adapted SHIME® model, simulating the ileum, and proximal and distal colons. We monitored fungal and bacterial colonization kinetics under conditions of eubiosis (commensal lifestyle) and antibiotic-induced dysbiosis (pathogenic lifestyle). Our findings highlighted the variability in the colonization potential of Candida species across different intestinal regions. The ileum compartment proved to be the most favourable environment for C. albicans and C. parapsilosis under conditions of eubiosis. Antibiotic-induced dysbiosis resulted in resurgence of opportunistic Candida species, especially C. tropicalis and C. albicans. Future research should focus on identifying specific bacterial species influencing Candida colonization resistance and explore the long-term effects of antibiotics on the mycobiome and bacteriome.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms