{"title":"Investigation of sample handling steps for accurate heparan sulphate disaccharide analysis using HPLC-MS.","authors":"Domonkos Pál, Gábor Tóth, Lilla Turiák","doi":"10.1002/elps.202400091","DOIUrl":null,"url":null,"abstract":"<p><p>Heparan sulphates (HSs), a specific class of glycosaminoglycans (GAGs), are important participants of cellular signalling. Analytical characterization of GAGs requires a complex sample preparation workflow. Although a detailed stability and recovery study is available for the chondroitin sulphate GAG class, the literature concerning HS is incomplete in this regard. Therefore, our aim was to systematically investigate various parameters that could potentially influence the stability and recovery of HS samples when performing disaccharide analysis using high-performance liquid chromatography-mass spectrometry. First, effects concerning vacuum evaporation and freezing were investigated. Next, the storage stability of the HS disaccharides was analysed under several conditions such as temperature, pH, digestion buffers, injection solvents and storage vessels. We have identified several critical parameters influencing the stability and recovery of HS disaccharides. We concluded that major sample loss is expected when Tris-HCl is used as digestion buffer, followed by vacuum evaporation at elevated temperatures, or samples are stored under alkaline conditions. Following the practical considerations of this paper can contribute to increasing the reliability of future analytical measurements.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400091","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Heparan sulphates (HSs), a specific class of glycosaminoglycans (GAGs), are important participants of cellular signalling. Analytical characterization of GAGs requires a complex sample preparation workflow. Although a detailed stability and recovery study is available for the chondroitin sulphate GAG class, the literature concerning HS is incomplete in this regard. Therefore, our aim was to systematically investigate various parameters that could potentially influence the stability and recovery of HS samples when performing disaccharide analysis using high-performance liquid chromatography-mass spectrometry. First, effects concerning vacuum evaporation and freezing were investigated. Next, the storage stability of the HS disaccharides was analysed under several conditions such as temperature, pH, digestion buffers, injection solvents and storage vessels. We have identified several critical parameters influencing the stability and recovery of HS disaccharides. We concluded that major sample loss is expected when Tris-HCl is used as digestion buffer, followed by vacuum evaporation at elevated temperatures, or samples are stored under alkaline conditions. Following the practical considerations of this paper can contribute to increasing the reliability of future analytical measurements.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.