Wei Ni, Mingzhu Zhang, Yueni Mo, Wei Du, Hui Liu, Zhaosong Wang, Yanfen Cui, He Zhang, Zhiyong Wang, Liming Liu, Hui Guo, Ruifang Niu, Fei Zhang, Ran Tian
{"title":"Macrophage membrane-based biomimetic nanocarrier system for enhanced immune activation and combination therapy in liver cancer.","authors":"Wei Ni, Mingzhu Zhang, Yueni Mo, Wei Du, Hui Liu, Zhaosong Wang, Yanfen Cui, He Zhang, Zhiyong Wang, Liming Liu, Hui Guo, Ruifang Niu, Fei Zhang, Ran Tian","doi":"10.1007/s13346-024-01690-y","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies have demonstrated that the combination of photodynamic therapy, photothermal therapy and chemotherapy is highly effective in treating hepatocellular carcinoma (HCC). However, the clinical application of this approach has been hindered by the lack of efficient and low-toxicity drug delivery platforms. To address this issue, we developed a novel biomimetic nanocarrier platform named ZID@RM, which utilizes ZIF8 functional nanoparticles encapsulated with macrophage membrane and loaded with indocyanine green and doxorubicin. The bionic nanocarrier platform has good biocompatibility, reducing the risk of rapid clearance by macrophages and improving the targeting ability for HCC cells. Under the dual regulation of acidity and infrared light, ZID@RM stimulated the generation of abundant reactive oxygen species within HCC cells, induced tumor cell pyroptosis and promoted the release of damage-associated molecular patterns to induce immune responses. In the future, this technology platform has the potential to provide personalized and improved healthcare by using patients' own macrophage membranes to create an efficient drug delivery system for tumor therapy.Graphical abstract Scheme 1 Schematic representation of the synthesis of a biomimetic nanomedicine delivery platform (ZID@RM) and its application in tumor imaging-guided combination therapy.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"1540-1553"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01690-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have demonstrated that the combination of photodynamic therapy, photothermal therapy and chemotherapy is highly effective in treating hepatocellular carcinoma (HCC). However, the clinical application of this approach has been hindered by the lack of efficient and low-toxicity drug delivery platforms. To address this issue, we developed a novel biomimetic nanocarrier platform named ZID@RM, which utilizes ZIF8 functional nanoparticles encapsulated with macrophage membrane and loaded with indocyanine green and doxorubicin. The bionic nanocarrier platform has good biocompatibility, reducing the risk of rapid clearance by macrophages and improving the targeting ability for HCC cells. Under the dual regulation of acidity and infrared light, ZID@RM stimulated the generation of abundant reactive oxygen species within HCC cells, induced tumor cell pyroptosis and promoted the release of damage-associated molecular patterns to induce immune responses. In the future, this technology platform has the potential to provide personalized and improved healthcare by using patients' own macrophage membranes to create an efficient drug delivery system for tumor therapy.Graphical abstract Scheme 1 Schematic representation of the synthesis of a biomimetic nanomedicine delivery platform (ZID@RM) and its application in tumor imaging-guided combination therapy.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.