Testing for similarity of multivariate mixed outcomes using generalized joint regression models with application to efficacy-toxicity responses.

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae077
Niklas Hagemann, Giampiero Marra, Frank Bretz, Kathrin Möllenhoff
{"title":"Testing for similarity of multivariate mixed outcomes using generalized joint regression models with application to efficacy-toxicity responses.","authors":"Niklas Hagemann, Giampiero Marra, Frank Bretz, Kathrin Möllenhoff","doi":"10.1093/biomtc/ujae077","DOIUrl":null,"url":null,"abstract":"<p><p>A common problem in clinical trials is to test whether the effect of an explanatory variable on a response of interest is similar between two groups, for example, patient or treatment groups. In this regard, similarity is defined as equivalence up to a pre-specified threshold that denotes an acceptable deviation between the two groups. This issue is typically tackled by assessing if the explanatory variable's effect on the response is similar. This assessment is based on, for example, confidence intervals of differences or a suitable distance between two parametric regression models. Typically, these approaches build on the assumption of a univariate continuous or binary outcome variable. However, multivariate outcomes, especially beyond the case of bivariate binary responses, remain underexplored. This paper introduces an approach based on a generalized joint regression framework exploiting the Gaussian copula. Compared to existing methods, our approach accommodates various outcome variable scales, such as continuous, binary, categorical, and ordinal, including mixed outcomes in multi-dimensional spaces. We demonstrate the validity of this approach through a simulation study and an efficacy-toxicity case study, hence highlighting its practical relevance.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae077","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A common problem in clinical trials is to test whether the effect of an explanatory variable on a response of interest is similar between two groups, for example, patient or treatment groups. In this regard, similarity is defined as equivalence up to a pre-specified threshold that denotes an acceptable deviation between the two groups. This issue is typically tackled by assessing if the explanatory variable's effect on the response is similar. This assessment is based on, for example, confidence intervals of differences or a suitable distance between two parametric regression models. Typically, these approaches build on the assumption of a univariate continuous or binary outcome variable. However, multivariate outcomes, especially beyond the case of bivariate binary responses, remain underexplored. This paper introduces an approach based on a generalized joint regression framework exploiting the Gaussian copula. Compared to existing methods, our approach accommodates various outcome variable scales, such as continuous, binary, categorical, and ordinal, including mixed outcomes in multi-dimensional spaces. We demonstrate the validity of this approach through a simulation study and an efficacy-toxicity case study, hence highlighting its practical relevance.

利用广义联合回归模型测试多变量混合结果的相似性,并将其应用于疗效-毒性反应。
临床试验中的一个常见问题是测试解释变量对相关反应的影响在两组(如患者组或治疗组)之间是否相似。在这方面,相似性被定义为在预先指定的阈值内的等效性,该阈值表示两组之间可接受的偏差。这一问题通常通过评估解释变量对反应的影响是否相似来解决。例如,这种评估基于差异的置信区间或两个参数回归模型之间的适当距离。通常,这些方法都建立在单变量连续或二元结果变量的假设之上。然而,多变量结果,特别是二元二进制反应以外的情况,仍然没有得到充分的探讨。本文介绍了一种基于广义联合回归框架、利用高斯协方差的方法。与现有的方法相比,我们的方法适用于各种结果变量尺度,如连续、二元、分类和序数,包括多维空间中的混合结果。我们通过一项模拟研究和一项疗效-毒性案例研究证明了这种方法的有效性,从而突出了它的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信